Как работать в EXCEL
Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.
Ввод исходных данных
Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.
Ячейка | Величина | Значение, обозначение, единица выражения |
D4 | 45,000 | Расход воды G в т/час |
D5 | 95,0 | Температура на входе tвх в °C |
D6 | 70,0 | Температура на выходе tвых в °C |
D7 | 100,0 | Внутренний диаметр d, мм |
D8 | 100,000 | Длина, L в м |
D9 | 1,000 | Эквивалентная шероховатость труб ∆ в мм |
D10 | 1,89 | Сумма коэф. местных сопротивлений — Σ(ξ) |
Пояснения:
- значение в D9 берётся из справочника;
- значение в D10 характеризует сопротивления в местах сварных швов.
Формулы и алгоритмы
Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.
Ячейка | Алгоритм | Формула | Результат | Значение результата |
D12 | !ERROR! D5 does not contain a number or expression | tср=(tвх+tвых)/2 | 82,5 | Средняя температура воды tср в °C |
D13 | !ERROR! D12 does not contain a number or expression | n=0,0178/(1+0,0337*tср+0,000221*tср2) | 0,003368 | Кинематический коэф. вязкости воды — n, cм2/с при tср |
D14 | !ERROR! D12 does not contain a number or expression | ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000 | 0,970 | Средняя плотность воды ρ,т/м3 при tср |
D15 | !ERROR! D4 does not contain a number or expression | G’=G*1000/(ρ*60) | 773,024 | Расход воды G’, л/мин |
D16 | !ERROR! D4 does not contain a number or expression | v=4*G:(ρ*π*(d:1000)2*3600) | 1,640 | Скорость воды v, м/с |
D17 | !ERROR! D16 does not contain a number or expression | Re=v*d*10/n | 487001,4 | Число Рейнольдса Re |
D18 | !ERROR! Cell D17 does not exist | λ=64/Re при Re≤2320 λ=0,0000147*Re при 2320≤Re≤4000 λ=0,11*(68/Re+∆/d)0,25 при Re≥4000 | 0,035 | Коэффициент гидравлического трения λ |
D19 | !ERROR! Cell D18 does not exist | R=λ*v2*ρ*100/(2*9,81*d) | 0,004645 | Удельные потери давления на трение R, кг/(см2*м) |
D20 | !ERROR! Cell D19 does not exist | dPтр=R*L | 0,464485 | Потери давления на трение dPтр, кг/см2 |
D21 | !ERROR! Cell D20 does not exist | dPтр=dPтр*9,81*10000 | 45565,9 | и Па соответственно D20 |
D22 | !ERROR! D10 does not contain a number or expression | dPмс=Σ(ξ)*v2*ρ/(2*9,81*10) | 0,025150 | Потери давления в местных сопротивлениях dPмс в кг/см2 |
D23 | !ERROR! Cell D22 does not exist | dPтр=dPмс*9,81*10000 | 2467,2 | и Па соответственно D22 |
D24 | !ERROR! Cell D20 does not exist | dP=dPтр+dPмс | 0,489634 | Расчетные потери давления dP, кг/см2 |
D25 | !ERROR! Cell D24 does not exist | dP=dP*9,81*10000 | 48033,1 | и Па соответственно D24 |
D26 | !ERROR! Cell D25 does not exist | S=dP/G2 | 23,720 | Характеристика сопротивления S, Па/(т/ч)2 |
Пояснения:
- значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
- ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».
Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.
Оформление результатов
Авторское цветовое решение несёт функциональную нагрузку:
- Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
- Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
- Жёлтые ячейки — вспомогательные предварительные расчёты.
- Светло-жёлтые ячейки — результаты расчётов.
- Шрифты: синий — исходные данные;
- чёрный — промежуточные/неглавные результаты;
- красный — главные и окончательные результаты гидравлического расчёта.
Результаты в таблице Эксель
Пример от Александра Воробьёва
Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.
Исходные данные:
- длина трубы100 метров;
- ø108 мм;
- толщина стенки 4 мм.
Таблица результатов расчёта местных сопротивлений Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.
Расчёт гидравлики отопительных каналов
Грамотно рассчитанная гидравлика позволяет правильно распределить диаметр труб по системе
Гидравлический расчет системы отопления обычно сводится к подбору диаметров труб, проложенных на отдельных участках сети. При его проведении обязательно учитываются следующие факторы:
- величина давления и его перепады в трубопроводе при заданной скорости циркуляции теплоносителя;
- его предполагаемый расход;
- типовые размеры используемых трубных изделий.
При расчете первого из этих параметров важно принять во внимание мощность насосного оборудования. Ее должно хватать для преодоления гидравлического сопротивления отопительных контуров. При этом решающее значение имеет суммарная длина полипропиленовых труб, с увеличением которой растет общее гидравлическое сопротивление систем в целом
По результатам проведенного расчета определяются показатели, необходимые для последующего монтажа отопительной системы и соответствующие требованиям действующих нормативов
При этом решающее значение имеет суммарная длина полипропиленовых труб, с увеличением которой растет общее гидравлическое сопротивление систем в целом. По результатам проведенного расчета определяются показатели, необходимые для последующего монтажа отопительной системы и соответствующие требованиям действующих нормативов.
· снижение быстродействия системы (увеличение тепловой инерции).
Для обеспечения минимизации капитальных затрат по второму экономическому условию — диаметры трубопроводов и арматуры должны быть наименьшими, но не приводящими при расчетном расходе теплоносителя к появлению гидравлических шумов в трубопроводах и запорно-регулирующей арматуре системы отопления, которые возникают при значениях скорости теплоносителя 0,6–1,5 м/с в зависимости от величины коэффициента местного сопротивления.
Очевидно, что при противоположной направленности приведенных требований к величине определяемого диаметра трубопровода существует область целесообразных значений скорости движения теплоносителя. Как показывает опыт строительства и эксплуатации систем отопления, а также сопоставление капитальных и эксплуатационных затрат, оптимальная область значений скоростей движения теплоносителя находится в пределах 0,3…0,7 м/с. При этом удельные потери давления будут составлять 45…280 Па/м для полимерных трубопроводов и 60…480 Па/м для стальных водогазопроводных труб.
Учитывая более высокую стоимость трубопроводов из полимерных материалов, целесообразно придерживаться более высоких скоростей движения теплоносителя в них для предотвращения увеличения капиталовложений при строительстве. При этом эксплуатационные затраты (гидравлические потери давления) в трубах из полимерных материалов в сравнении со стальными трубами будут меньше или оставаться на том же уровне благодаря значительно более низкой величине коэффициента гидравлического трения.
Получить полный текст
Для определения внутреннего диаметра трубопровода dвн
на расчетном участке системы отопления при известном транспортируемом тепловом потоке и разности температур в подающем и обратном трубопроводах∆tco= 90 – 70 = 20°С (для двухтрубных систем отопления) или расходе теплоносителя удобно пользоваться таблицей 1.
Таблица 1. Определение внутреннего диаметра трубопроводов системы отопления
Дальнейший выбор трубопроводов для инженерных систем жизнеобеспечения, в том числе и отопления, заключается в определении типа трубы, которая при планируемых условиях эксплуатации обеспечит максимальную надежность и долговечность. Столь высокие требования объясняются тем, что трубопроводы систем горячего и холодного водоснабжения, отопления, теплоснабжения установок вентиляции и кондиционирования воздуха, газоснабжения и других инженерных систем проходят практически через весь объем здания.
Стоимость трубопроводов всех инженерных систем в сравнении со стоимостью здания — менее 0,1%, а авария или замена трубопроводов при их сроке эксплуатации менее срока эксплуатации здания приводит к значительным дополнительным затратам на косметический или капитальный ремонты, не говоря о возможных убытках при аварии на восстановление оборудования и материальных ценностей, находящихся в здании.
Все трубы промышленного изготовления, которые применяют в системах отопления, можно разделить на две большие группы — металлические и неметаллические. Главная отличительная особенность металлических труб — механическая прочность, неметаллических — долговечность.
На основании предварительно определенного внутреннего диаметра трубопровода принимают соответствующий диаметр условного прохода dy
для металлических труб или наружный диаметр и толщину стенки трубыdн x sдля полимерных (металлополимерных) трубопроводов.
Разные типы труб имеют различные механические, гидравлические и эксплуатационные характеристики, оказывающие различное влияние на процессы гидродинамики и распределения тепловых потоков в системе отопления.
Известно, что при снижении гидравлических потерь давления на трение при движении теплоносителя в трубах повышается эффективность регулирования расходом теплоносителя (тепловым потоком) отопительного прибора за счет увеличения (перераспределения) срабатываемого располагаемого давления на регулируемых вручную или автоматически вентилях, кранах, клапанах или другой арматуре. При этом говорят о росте авторитета регулирующего вентиля. Под авторитетом регулирующей арматуры следует понимать долю располагаемого на регулируемом участке давления, которая расходуется на преодоление местного сопротивления вентиля (клапана) при движении теплоносителя.
АВОК-СОФТ
TA Select это вычислительная программа, которая помогает вам управлять вашей гидравлической системой, начиная со стадии проектирования и до окончания срока службы здания.
Ссылка для перехода на сайт программы
Вместе с нашим балансировочным инструментом TA SCOPE TA программа TA Select поможет вам достичь:
Наиболее экономичной гидравлической конструкции
TA Select 4 позволяет легко подобрать правильный размер клапанов, значения предустановок и наиболее экономичную конструкцию системы. Для этого нужно только ввести в TA Select:
- Длины труб
- Расчетный расход на оконечных устройствах
- Перепады давления
На выходе вы получаете:
- Необходимый напор насоса
- Подробный перечень комплектующих оптимального размера, например, регулирующие и балансировочные клапаны
- Конструкция установки (гидравлической сети) для загрузки в программы по балансировке
- Общие длины трубопроводов по диаметрам
- Объем воды в трубопроводе
Проверка того, что установка работает как нужно …
TA Select 4 связывается с нашим новым балансировочным инструментом TA SCOPE и позволяет легко загружать и выгружать системную информацию в/из программы TA SCOPE. Это ускоряет процесс балансировки и дает возможность проверить, что система при вводе в эксплуатацию соответствует оригинальной конструкции.
Затем конструкцию установки (гидравлической сети), спроектированной в TA Select вы загружаете в TA-SCOPE и производите балансировку. После балансировки установки, измеренные данные загружаются в TA Select. Проверяется расход, перепад давления, 2 температуры, перепад давления и мощность.
На выходе вы получаете документ в форме распечатанного отчета.
…и в течение всего срока службы системы
Мы хотим, чтобы гидравлическая система работала, как положено, весь срок службы. С помощью TA SCOPE и TA Select можно легко проверить правильно ли работает система.
В TA SCOPE вводится расход, перепад давления, 2 температуры, перепад температуры и мощность. Для анализа этих измеренных данных они загружаются в TA Select.
Ссылка для перехода на сайт программы
Производим расчет мощности котла отопления
При выполнении расчета отопительной системы, прежде всего, необходимо как можно точнее определить требуемую мощность котла, так как именно от этого показателя будет зависеть эффективность ее работы, с точки зрения обеспечения необходимого температурного режима в помещениях жилого дома.
Если мощность будет меньше необходимой, то в доме будет недостаточно тепло, а при чрезмерной мощности котла, будет необоснованный перерасход топлива, что приведет к лишним финансовым затратам.
Чтобы определить какой должна быть оптимальная мощность отопительного котла надо знать:
- общую площадь помещений, которые предполагается отапливать, обозначаемую через букву S;
- удельную мощность котла на каждые 10 кубометров помещения, обозначают W уд.
Причем, данную величину нужно откорректировать в соответствие с природно-климатическими условиями местности, где расположено строение.
Обратите внимание, что обычно на практике значение удельной мощности, определяют из диапазонов, установленных для конкретных климатических зон. Так, для южных регионов удельная мощность должна быть в диапазоне 0,7 – 0,9 кВт., для Средней полосы — 1,2 — 1,5 кВт., а для Севера — от 1,5-2,0 кВт. Так, для южных регионов удельная мощность должна быть в диапазоне 0,7 – 0,9 кВт., для Средней полосы — 1,2 — 1,5 кВт., а для Севера — от 1,5-2,0 кВт
Так, для южных регионов удельная мощность должна быть в диапазоне 0,7 – 0,9 кВт., для Средней полосы — 1,2 — 1,5 кВт., а для Севера — от 1,5-2,0 кВт.
Для упрощения вычислений можно удельную мощность принять равной единице. Таким образом, получим правило для выбора требуемой мощности котла, по которому на каждые 100 кв. метров площади отапливаемого помещения необходимо 10 кВт.
Расчет отопления для жилого строения во многом определяет водяное отопление какого типа будет выбрано.
При выборе надо руководствоваться величиной площади дома.
В случае если она более 100 кв. метров, то принудительную циркуляцию теплоносителя, например, воды можно обеспечить только путем установления циркуляционного насоса.
Для домов с меньшей площади установка насоса не потребуется, так как в этом случае возможно использование отопительных систем, действующих по принципу естественной циркуляцией.
Механический цех:
Qср.х===0,0824 л/с
Qмакс.х.=К*Qср.х.=3*0,0737=0,24 л/с
Qдуш===1,79 л/с
Qн.п.=10 л/с; Qвн.п.= не предусмотрено ( табл.1.)
Qрасч.=Qмакс.х.+Qпр+Qдуш=0,24+4,5+1,79=6,56 л/с
Q’расч.=Qмакс.х.+Qпр=0,24+4,5=4,74 л/с
Прядильный цех:
Qср.х.===0,2517 л/с
Qмакс.х.=К*Qср.х.=3*0,26=0,756 л/с
Qдуш===2,59 л/с
Qн.п.=30 л/с; Qвн.п.=2*2,5=5,0 л/с
Qрасч.=Qмакс.х.+Qпр+Qдуш=0,755+6+2,59=9,35 л/с
Q’расч.=Qмакс.х.+Qпр+Qвн.п.+Qн.п.=0,755+6+30+5=41,75 л/с
Ткацкий цех:
Qср.х.===0,208 л/с
Qмакс.х.=К*Qср.х.=3*0,217=0,624 л/с
Qдуш===2,59 л/с
Qн.п.=20 л/с; Qвн.п.=2*2,5=5,0 л/с
Qрасч.=Qмакс.х.+Qпр+Qдуш=0,624+3,5+2,13=6,26 л/с
Q’расч.=Qмакс.х.+Qпр.=0,624+3,5=4,124 л/с
Отделочный цех:
Qср.х.===0,117 л/с
Qмакс.х.=К*Qср.х.=3*0,121=0,351 л/с
Qдуш===3,33 л/с
Qн.п.=20 л/с; Qвн.п.=2*2,5=5,0 л/с
Qрасч.=Qмакс.х.+Qпр+Qдуш=0,351+4,5+3,33=8,18 л/с
Q’расч.=Qмакс.х.+Qпр=0,351+4,5=4,851 л/с
Котельная:
Qср.х.===0,07 л/с
Qмакс.х.=К*Qср.х.=2,5*0,0468=0,175 л/с
Qдуш===1,25 л/с
Qн.п.=10 л/с; Qвн.п.=2*2,5=5,0 л/с
Qрасч.=Qмакс.х.+Qпр+Qдуш=0,175+8+1,25=9,43 л/с
Q’расч.=Qмакс.х.+Qпр.=0,175+8=8,175 л/с
Таблица 1
Расчет воды для зданий комбината
№ здания | Наименование здания | , чел | Qср.х л/с | К | Qмакс.х.л/с | , чел | Qдуш,л/с | Qпр.,л/с | Qпож | Qрасч , лс | Q’расч, лс | ||||
Qн.п | Qвн.п | ||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
1 | Механический цех | 95 | 25 | 0,082 | 3 | 0,24 | 90 | 500 | 1,79 | 4,5 | 10 | — | 6,56 | 4,74 | |
2 | Прядильный цех | 290 | 25 | 0,252 | 3 | 0,756 | 280 | 500 | 2,59 | 6,0 | 30 | 5 | 9,35 | 41,75 | |
3 | Ткацкий цех | 240 | 25 | 0,208 | 3 | 0,624 | 230 | 500 | 2,13 | 3,5 | 20 | 5 | 6,26 | 4,124 | |
4 | Отделочный цех | 135 | 25 | 0,117 | 3 | 0,351 | 120 | 500 | 3,33 | 4,5 | 20 | 5 | 8,18 | 4,851 | |
5 | Котельная | 45 | 45 | 0,07 | 2,5 | 0,175 | 45 | 500 | 1,25 | 8,0 | 10 | 5 | 9,43 | 8,175 | |
ВСЕГО: | 39,78 | 63,64 |
Расчет тепловой мощности системы отопления
Тепловая мощность системы отопления — это количество теплоты, которое необходимо выработать в доме для комфортной жизнедеятельности в холодное время года.
Теплотехнический расчет дома
Существует зависимость между общей площадью обогрева и мощностью котла. При этом, мощность котла должна быть больше или равняться мощности всех отопительных приборов (радиаторов). Стандартный теплотехнический расчет для жилых помещений следующий: 100 Вт мощности на 1 м² отапливаемой площади плюс 15 — 20 % запаса.
Расчет количества и мощности приборов отопления (радиаторов) необходимо проводить индивидуально для каждого помещения. Каждый радиатор имеет определенную тепловую мощность. В секционных радиаторах общая мощность складывается из мощности всех используемых секций.
В несложных отопительных системах приведенных способов расчета мощности бывает достаточно. Исключение — здания с нестандартной архитектурой, имеющие большие площади остекления, высокие потолки и другие источники дополнительных теплопотерь. В этом случае потребуется более детальный анализ и расчет с использованием повышающих коэффициентов.
Теплотехнический расчет с учетом тепловых потерь дома
Расчет тепловых потерь дома необходимо выполнять для каждого помещения в отдельности, с учетом окон, дверей и внешних стен.
Более детально для данных теплопотерь используют следующие данные:
- Толщину и материал стен, покрытий.
- Конструкцию и материал кровельного покрытия.
- Тип и материал фундамента.
- Тип остекления.
- Тип стяжек пола.
Для определения минимально необходимой мощности отопительной системы с учетом тепловых потерь можно воспользоваться следующей формулой:
Qт(кВт×ч) = V × ΔT × K ⁄ 860, где:
Qт — тепловая нагрузка на помещение.
V — объем обогреваемого помещения (ширина × длина × высота), м³.
ΔT — разница между температурой воздуха вне помещения и необходимой температурой внутри помещения, °C.
K — коэффициент тепловых потерь строения.
860 — перевод коэффициента в кВт×ч.
Коэффициент тепловых потерь строения K зависит от типа конструкции и изоляции помещения:
K | Тип конструкции |
3 — 4 | Дом без теплоизоляции — упрощенная конструкция или конструкция из гофрированного металлического листа. |
2 — 2,9 | Дом с низкой теплоизоляцией — упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши. |
1 — 1,9 | Средняя теплоизоляция — стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. |
0,6 — 0,9 | Высокая теплоизоляция — улучшенная конструкция, кирпичные стены с теплоизоляцией, небольшое число окон, утепленный пол, кровельный пирог с высококачественной теплоизоляцией. |
Разница между температурой воздуха вне помещения и необходимой температурой внутри помещения ΔT определяется исходя из конкретных погодных условий и требуемого уровня комфорта в доме. Например, если температура снаружи -20 °C, а внутри планируется +20 °C, то ΔT = 40 °C.
Начальные условия примера
Для более конкретного пояснения всех деталей гидравлического просчёта возьмем конкретный пример обычного жилищного помещения. В наличии имеем классическую 2-комнатную квартиру панельного дома, общей площадью 65,54 м2, которая включает две комнаты, кухню, раздельные туалет и ванная, двойной коридор, спаренный балкон.
После сдачи в эксплуатацию получили следующую информацию относительно готовности квартиры. Описываемая квартира включает обработанные шпаклевкой и грунтом стены из монолитных железо-бетонных конструкций, окна из профиля с двух камерными стеклами, тырсо-прессованные межкомнатные двери, керамическая плитка на полу санузла.
Типичный панельный 9-этажный дом на четыре подъезда. На каждом этаже по 3 квартиры: одна 2-комнатная и две 3-комнатных. Квартира расположена на пятом этаже
Кроме того, представленное жильё уже оснащено медной проводкой, распределителями и отдельным щитком, газовой плитой, ванной, умывальником, унитазом, полотенцесушителем, мойкой.
И самое главное в жилых комнатах, ванной и кухне уже имеются алюминиевые отопительные радиаторы. Вопрос относительно труб и котла остаётся открытым.
https://youtube.com/watch?v=YB1TyD3S1YY
Расчет диаметра труб
Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:
- для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
- для однотрубной – расход теплоносителя G, кг/ч.
Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) — V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.
При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.
Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени
Q (Вт) = W (Дж)/t (с)
Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.
Таблица параметров участков
Обозначение участка | Длина участка в метрах | Количество приборов а участке, шт. |
1-2 | 1,8 | 1 |
2-3 | 3,0 | 1 |
3-4 | 2,8 | 2 |
4-5 | 2,9 | 2 |
Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.
Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир. Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления. Далее на каждом участке размер трубы уменьшают на один шаг.
Такой подход не оправдывает себя, если в доме имеется два или более этажей. В этом случае приходится производит полноценный расчет и обращаться к таблицам.
Определение потерь давления в трубах
Сопротивление потерь давления в контуре, по которому циркулирует теплоноситель, определяется как их суммарное значение для всех отдельных составляющих. К последним относят:
- потери в первичном контуре, обозначаемые как ∆Plk;
- местные издержки теплоносителя (∆Plм);
- падение давления в особых зонах, называемых «генераторами тепла» под обозначением ∆Pтг;
- потери внутри встроенной теплообменной системы ∆Pто.
После суммирования этих величин получается искомый показатель, характеризующий полное гидравлическое сопротивление системы ∆Pсо.
Помимо этого обобщенного метода существуют другие способы, позволяющие определить потери напора в трубах из полипропилена. Один из них основан на сравнении двух показателей, привязанных к началу и концу трубопровода. В этом случае вычислить потерю давления можно простым вычитанием начального и конечного его значений, определяемых по двум манометрам.
Еще один вариант вычисления искомого показателя основан на применении более сложной формулы, учитывающей все факторы, которые влияют на характеристики теплового потока. Приводимое ниже соотношение в первую очередь учитывает потерю напора жидкости из-за большой длины трубопровода.
- h – потери напора жидкости, в исследуемом случае измеряемые в метрах.
- λ – коэффициент гидравлического сопротивления (или трения), определяемый по другим расчетным методикам.
- L – общая длина обслуживаемого трубопровода, которая измеряется в погонных метрах.
- D –внутренний типоразмер трубы, определяющий объем потока теплоносителя.
- V – скорость тока жидкости, измеряемая в стандартных единицах (метр за секунду).
- Символ g – это ускорение свободного падения, равное 9,81 м/сек2.
Потери давления происходят из-за трения жидкости о внутреннюю поверхность труб
Большой интерес представляют потери, вызванные высоким коэффициентом гидравлического трения. Он зависит от шероховатости внутренних поверхностей труб. Используемые в этом случае соотношения справедливы лишь для трубных заготовок стандартной круглой формы. Окончательная формула для их нахождения выглядит так:
- V – скорость перемещения водных масс, измеряемая в метрах/секунду.
- D – внутренний диаметр, определяющий свободное пространство для перемещения теплоносителя.
- Стоящий в знаменателе коэффициент указывает на кинематическую вязкость жидкости.
Последний показатель относится к постоянным величинам и находится по специальным таблицам, в больших количествах опубликованным в Интернете.
Последовательность выполнения гидравлического расчета
1. Выбирается главное циркуляционное кольцо системы отопления (наиболее невыгодно расположенное в гидравлическом отношении). В тупиковых двухтрубных системах это кольцо, проходящее через нижний прибор самого удаленного и нагруженного стояка, в однотрубных – через наиболее удаленный и нагруженный стояк.
Например, в двухтрубной системе отопления с верхней разводкой главное циркуляционное кольцо пройдет от теплового пункта через главный стояк, подающую магистраль, через самый удаленный стояк, отопительный прибор нижнего этажа, обратную магистраль до теплового пункта.
В системах с попутным движением воды в качестве главного принимается кольцо, проходящее через средний наиболее нагруженный стояк.
2. Главное циркуляционное кольцо разбивается на участки (участок характеризуется постоянным расходом воды и одинаковым диаметром). На схеме проставляются номера участков, их длины и тепловые нагрузки. Тепловая нагрузка магистральных участков определяется суммированием тепловых нагрузок, обслуживаемых этими участками. Для выбора диаметра труб используются две величины:
а) заданный расход воды;
б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце Rср.
Для расчета Rcp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.
3. Определяется расчетное циркуляционное давление по формуле
, (5.1)
где– давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное
, (5.2)
где
– сумма длин участков главного циркуляционного кольца;
– естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как
, (5.3)
где– расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.
Значение коэффициента можно определить из табл.5.1.
Таблица 5.1 – Значение в зависимости от расчетной температуры воды в системе отопления
(),C | , кг/(м3К) |
85-65 | 0,6 |
95-70 | 0,64 |
105-70 | 0,66 |
115-70 | 0,68 |
– естественное давление, возникающее в результате охлаждения воды в трубопроводах .
В насосных системах с нижней разводкой величинойможно пренебречь.
Определяются удельные потери давления на трение
, (5.4)
где к=0,65 определяет долю потерь давления на трение.
5. Расход воды на участке определяется по формуле
(5.5)
гдеQ – тепловая нагрузка на участке, Вт:
(tг – tо) – разность температур теплоносителя.
6. По величинамиподбираются стандартные размеры труб .
6. Для выбранных диаметров трубопроводов и расчетных расходов воды определяется скорость движения теплоносителя v и устанавливаются фактические удельные потери давления на трение Rф.
При подборе диаметров на участках с малыми расходами теплоносителя могут быть большие расхождения междуи. Заниженные потерина этих участках компенсируются завышением величинна других участках.
7. Определяются потери давления на трение на расчетном участке, Па:
. (5.6)
Результаты расчета заносят в табл.5.2.
8. Определяются потери давления в местных сопротивлениях, используя или формулу:
, (5.7)
где– сумма коэффициентов местных сопротивлений на расчетном участке .
Значение ξ на каждом участке сводят в табл. 5.3.
Таблица 5.3 – Коэффициенты местных сопротивлений
№ п/п | Наименования участков и местных сопротивлений | Значения коэффициентов местных сопротивлений | Примечания |
9. Определяют суммарные потери давления на каждом участке
. (5.8)
10. Определяют суммарные потери давления на трение и в местных сопротивлениях в главном циркуляционном кольце
. (5.9)
11. Сравнивают Δр с Δрр. Суммарные потери давления по кольцу должны быть меньше величины Δрр на
. (5.10)
Запас располагаемого давления необходим на неучтенные в расчете гидравлические сопротивления.
Если условия не выполняются, то необходимо на некоторых участках кольца изменить диаметры труб.
12. После расчета главного циркуляционного кольца производят увязку остальных колец. В каждом новом кольце рассчитывают только дополнительные не общие участки, параллельно соединенные с участками основного кольца.
Невязка потерь давлений на параллельно соединенных участках допускается до 15% при тупиковом движении воды и до 5% – при попутном.
Таблица 5.2 – Результаты гидравлического расчета для системы отопления
На схеме трубопровода | По предварительному расчету | По окончательному расчету | ||||||||||||||
Номер участка | Тепловая нагрузка Q, Вт | Расход теплоносителя G, кг/ч | Длина участка l,м | Диаметрd, мм | Скоростьv, м/с | Удельные потери давления на трение R, Па/м | Потери давления на трение Δртр, Па | Сумма коэффициентов местных сопротивлений∑ξ | Потери давления в местных сопротивлениях Z | d, мм | v, м/с | R, Па/м | Δртр, Па | ∑ξ | Z, Па | Rl+Z, Па |
Занятие 6