Принцип работы параметрического стабилизатора
⇐ ПредыдущаяСтр 3 из 3
При проектировании источников питания для радиоэлектронной аппаратуры предъявляются высокие требования к стабильности выходного напряжения.
Простейшими стабилизаторами напряжения являются схемы, использующие нелинейные элементы, вольт-амперная характеристика которых содержит участок, где напряжение почти не зависит от тока. Такую вольт-амперную характеристику имеет стабилитрон, работающий при обратном напряжении в области пробоя (рис. 3.1, б).
Схема простейшего стабилизатора напряжения, называемого параметрическим, приведена на рисунке 3.1, а.
В этой схеме стабильность выходного напряжения определяется в основном параметрами стабилитрона. Колебания входного напряжения или тока нагрузки приводят к изменению тока через стабилитрон, однако напряжение на стабилитроне, подключенном
параллельно нагрузке, изменяется незначительно. Рис. 3.1.
а) схема параметрического стабилизатора;
б) вольтамперная характеристика стабилитрона
Действительно, входное напряжение распределяется между балластным резистором Rб
и стабилитроном (рис. 3.1,б)
, (3.1)
где – падение напряжения на балластном резисторе Rб
от протекания токов стабилитронаIст. и нагрузкиIстаб. .
Построение линии нагрузки ведем по двум точкам с координатами
1) I=0 U=Uвыпр;
2) I=Iст U=Uст.
Так как напряжение на стабилитроне Uст в соответствии с вольт-амперной характеристикой почти не зависит от тока стабилитрона в пределах участка от Iст.мин до Iст.мax, то приращение входного напряжения DUвх, равно приращению напряжения DURб на резисторе Rб.
Так как ток нагрузки Iстаб = Uстаб/Rн = Uст/Rн остается при этом неизменным, то
DUвыпр=DURб=DIстRб, (3.2)
т. е. при изменении входного напряжения на значение DUвыпр, ток стабилитрона изменяется на значение DUвыпр/Rб.
При изменении входного напряжения изменяется ток стабилитрона, и линия нагрузки передвигается параллельно себе вниз или вверх. При этом напряжение на стабилитроне и на нагрузке изменяется в пределах Uст min до Uст max, а ток через стабилитрон от Iст min до Iст max.
Предположим, что нагрузка изменилась, например, уменьшилось сопротивление резистора Rн, что привело к увеличению тока нагрузки. Так как при неизменном входном напряжении должно сохраняться постоянство входного тока Iвыпр=Iст+ Iстаб=const, то увеличение тока Iстаб влечет за собой уменьшение на такое же значение тока стабилитрона.
3.2. Основные параметры стабилизаторов напряжения:
коэффициент полезного действия, равный отношению мощности, выделяемой в нагрузке, к входной мощности, т. е.
(3.3)
коэффициент стабилизации, определяемый как отношение относительного приращения напряжения на входе стабилизатора DUвыпр/Uвыпр к относительному приращению напряжения на выходе DUстаб/Uстаб при постоянной нагрузке:
, (3.4)
выходное сопротивление, равное отношению приращения напряжения на выходе стабилизатора DUстаб к приращению тока нагрузки DIн:
. (3.5)
При питании усилителей выходное сопротивление стабилизатора создает паразитные обратные связи через источник, приводящие к изменению параметров усилителей и даже к самовозбуждению усилителей. Поэтому выходное сопротивление стабилизатора желательно снижать.
Выходное сопротивление параметрического стабилизатора (рис. 3.1,а) определяется дифференциальным сопротивлением стабилитрона Rд на рабочем участке вольтамперной характеристики:
(3.6)
поскольку выходным напряжением стабилизатора является напряжение на стабилитроне (Uстаб=Uст),
а изменение тока в нагрузке равно изменению тока через стабилитрон (DIстаб=DIст).
Коэффициент стабилизации параметрического стабилизатора
. (3.7)
Коэффициент стабилизации параметрических стабилизаторов напряжения не превышает 50. Параметрические стабилизаторы напряжения просты и надежны, однако обладают существенными недостатками, главными из которых являются невозможность регулировки выходного напряжения и малое значение коэффициента стабилизации, особенно при больших токах нагрузки (
Iстаб > Iст.ном).
⇐ Предыдущая3
Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все…
Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? — задался я вопросом…
ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между…
Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор…
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Расчёт параметрического стабилизатора
Для вычислений рабочих параметров применяют следующие формулы:
- с учетом деления напряжения разницу потенциалов на отдельных компонентах определяют следующим образом: Uвх = Uн + I*Rогр = Uн + (Iст + Iн)*Rогр;
- для поддержания стабильного напряжения необходимо поддерживать допустимую силу тока в соответствии с ограничениями по ВАХ (Imin, Imax);
- с учетом отмеченных принципов определяют номинал ограничительного сопротивления: Rогр = (Uвх min – Uст min)/ (In max + Iст min);
- функциональный диапазон схемы параметрического стабилизатора уточняют по допустимому диапазону изменения входного напряжения: ΔUвх = Uвх max – Uвх min = Uст max + ((Iст max + In min) * Rогр – (Ucт min + (In max + I cт min) * Rогр);
- для упрощения можно применить математическое преобразование формулы: ΔUвх = (Uст max – Uст min) + (Iст max – I ст min) * Rогр – (In max – In min) * Rогр;
- с учетом сделанного разделения: ΔUвх = ΔUст +ΔIст * R огр + ΔIn * Rогр;
- если ток в нагрузке не изменяется: ΔUвх = ΔIст * R огр;
- энергетическую эффективность созданного устройства рассчитать можно с учетом потерь: КПД = (Uст*In)/(Uвх * Iвх) = (Uст/Uвх)/(1+Iст/In).
К сведению. Последняя формула объясняет увеличение энергетических затрат при повышении разницы между напряжением на входе и выходе. Аналогичное условие соблюдается при прохождении большего тока через полупроводниковый прибор.
Исходные данные определяют по параметрам источника питания (нагрузки). В соответствии с результатами вычислений подбирают подходящий ограничительный резистор и стабилитрон. Располагать компоненты нужно в соответствии с показанной на рисунке схемой.
Калькулятор расчёта мощности стабилизатора напряжения
Как выбрать мощность стабилизатора напряжения для дома, дачи, холодильника или газового котла?
При выборе стабилизатора для дома важно учитывать то, что у некоторых электроприборов пусковой ток в несколько раз превышает номинальный. Примером таких электроустройств могут быть приборы с асинхронными двигателями — холодильники, компрессоры, вентиляторы, насосы
Для их нормальной работы потребуется стабилизатор напряжения, чья мощность в три-пять раз превышает потребляемую. Получается для устройства, которое имеет двигатель — его мощность нужно умножить (как минимум) на 3 (из-за использования большего тока при запуске двигателя).
Для того, чтобы правильно выбрать мощность стабилизатора для дома, необходимо сложить мощность всех потребителей включаемых одновременно с учетом пусковых токов.
Например: холодильник на 600Вт x 3 = 1800Вт. Для подбора ему стабилизатора следует учитывать мощность не 600, а 1800 Вт. (Более подробное описание примера находится на странице ниже.)
В калькуляторе — мощность Ватт и количество приборов можно менять на свои .
ПОДОБРАТЬ СТАБИЛИЗАТОР ДЛЯ ГАЗОВОГО КОТЛА МОЖНО В КАЛЬКУЛЯТОРЕ МОЩНОСТИ ТУТ Стабилизаторы напряжения 220В >>>
Пример определение точной суммарной мощности однофазного и трехфазного напряжения
Прежде чем приобрести стабилизирующее устройство для сети с одной фазой, следует определить суммарную мощность всех энерго потребителей, которые будут подключены к стабилизатору. Допустим, планируется осуществить его установку прямо на входе, обеспечив энергией весь дом. В таком случае следует выяснить величину активной мощности каждого устройства, после чего все значения сложить.
Стандартный набор устройств:
(Мощность современных устройств может быть больше, в таком случае нужно делать подсчет исходя из ваших показателей)
• Телевизор — 300 В;
Общая активная мощность — 3000В.
При этом пылесос и холодильник имеют электродвигатели. Для запуска двигателей требуется ток, величина которого превышается номинальное значение в 3-5 раз. Поэтому их мощность (пылесоса 1000 и холодильника 400) нужно умножить на это число 3 = 4200В).
После этого необходимо найти полную мощность, которая отличается от активной на величину коэффициента мощности (cosф). Данное значение указывается в технических паспортах устройств, однако в среднем оно равняется 0,75, для утюгов и прочего нагревательного оборудования — 1, для энергосберегающих лампочек — 0,9. Для пересчета активную мощность нужно разделить на cosф.
• Телевизор — 300 / 0,75 = 400 ВА;
• Компьютер — 300 / 0,75 = 660 ВА;
• Холодильник — (400×3) / 0,75 = 1600 ВА;
• Пылесос — (1000×3) / 0,75 = 4000 ВА;
• Утюг — 550 / 1 = 550 ВА;
• Освещение — 450 / 0,9 = 500 ВА.
Общая мощность равняется 7450 ВА = 7,5 кВт.
На следующем этапе с помощью мультиметра необходимо определить величину минимального сетевого напряжения в наиболее загруженный период.
К примеру, это число равняется 180В.
Нормальное функционирование стабилизатора возможно лишь, если при его выборе учитывался нижний предел напряжения.
Бытовые электроприборы потребляют не только активную мощность, но и реактивную. Это возникает в результате индуктивности. Если электроприбор оборудован мощным двигателем, то при его включении резко возрастает напряжение. Учитывайте это. Если выбирать стабилизатор по мощности самого электроприбора, которая указана в документации, то в момент такого пика стабилизатор напряжения может попросту не справиться с нагрузкой. Также учитывается коэффициент трансформации. При идеальных условиях он равен нулю. Если происходит просадка или скачок в сети, то стабилизатор его выравнивает. Эта зависимость отображена в таблице.
В данном случае минимальное напряжение равняется 180В, что соответствует коэффициенту 1,2. Если же значение равняется 170В, используется коэффициент 1,3.
Определяем мощность:
7,5 умножить на 1,2 = 9 кВт
Однако всегда необходимо оставлять запас мощности. Поэтому полученное число умножаем на коэффициент запаса, который равняется 1,25:
9 умножить на 1,25 = 11,25 кВт
При таких показателях нужно выбирать стабилизатор с мощностью от 12 кВт.
Пример выбора стабилизатора напряжения для трехфазной сети
В результате из имеющегося ассортимента стабилизаторов выбирается наиболее подходящий вариант с мощностью выше полученного значения.
Как перевести вольт-ампер в ватты
Разобравшись, что же такое ва, нужно рассмотреть, что нужно делать, если необходимо вольт ампер перевести в ватт. Для решения бытовых задач можно следовать следующему алгоритму:
- В инструкции источника питания нужно найти значение потребляемой им мощности. Часто производящие фирмы указывают значение этого параметра в вольт-амперах. Оно обозначает наибольшее количество электрической энергии, которое устройство способно потребить из сети. Таким образом, его можно приравнять к полному мощностному значению.
- Теперь нужно узнать коэффициент полезного действия эксплуатируемого источника. Он определяется особенностями его конструкции и тем, сколько приборов к нему подсоединено. На практике такой коэффициент при подключении бытовой и профессиональной техники обычно варьируется в пределах 0,6-0,8.
- После этого выполняется собственно перевод вольт-амперных единиц в ваттные. Для его выполнения нужно узнать активную мощность прибора, поставляющего бесперебойное питание. Чтобы узнать ее значение в ваттах, нужно потребляемый мощностной параметр в вольт-амперах, обозначенный производителем в прилагающейся документации, перемножить на КПД устройства (он же – коэффициент мощности). Это можно выразить посредством формулы: В = ВА*КПД.
Способ расчета можно показать на примере. Допустим, в техническом паспорте аппарата указано, что его потребляемая мощность равняется 2000 вольт-ампер. Коэффициент полезного действия оказывается равным 0,7. Если перемножить числа, получается: 2000*0,7=1400 Ватт. Данное число показывает активную потребляемую мощность, выдаваемую данным устройством. Оставшиеся 30% представляют собой энергетические потери, связанные с функционированием питательного блока.
Также для перевода ва в вт применяется калькулятор. Нужно заполнить поля, которые предлагает экранная форма, значениями, соответствующими показателям того или иного прибора, и нажать кнопку, инициирующую расчеты. По завершении пользователь получит нужное мощностное значение в ваттах.
Важно! Активное мощностное значение по определению не может превышать полную мощность. Но у определенной части потребителей электротока (к примеру, лампочек накаливания, кипятильников, электрочайников) эти два показателя равны друг другу за счет отсутствия компонента реактивной нагрузки, поэтому при расчетах, связанных с ними, не потребуется ватты переводить в вольтамперы или наоборот
У данных приборов мощностные цифры, выраженные в ваттах, будут идентичны таковым в вольт-амперах
Это обозначает, что уровень, потребляемый прибором и требующийся для его исправного функционирования, будет равняться активной мощности, выраженной в ваттах
У данных приборов мощностные цифры, выраженные в ваттах, будут идентичны таковым в вольт-амперах. Это обозначает, что уровень, потребляемый прибором и требующийся для его исправного функционирования, будет равняться активной мощности, выраженной в ваттах.
Принцип работы стабилитрона
Полупроводниковые приборы отличаются нелинейной реакцией при работе с разными токами (напряжениями). Для изучения функциональности пользуются вольтамперной характеристикой (ВАХ), которая наглядно демонстрирует взаимное влияние базовых параметров и особенности определенной конструкции.
ВАХ диода
Так как стабилитрон является одной из разновидностей диода, изучение принципов работы можно начать с рассмотрения типичного электронно-дырочного (n-p) полупроводникового перехода. В правой части показано включение диода в прямом направлении. Хорошо видно, как от порогового уровня Uп дальнейшее повышение напряжения сопровождается практически линейным увеличением тока в цепи. Определенные потери можно учесть при составлении электрической схемы.
При обратном включении источника питания (левая часть рисунка) увеличение напряжения до показанного значения незначительно изменяет ток. Далее (при значении Uпр) возникает пробой, который определяется особенностями перехода:
- тепловой,
- лавинный;
- туннельный.
Первый из отмеченных в перечне вариантов означает чрезмерное повышение температуры и разрушение полупроводникового прибора. Третий – сопровождается увеличением тока, образованного парными зарядами. Для стабилизации подходит лавинная реакция в переходе. Как показано на графике, напряжение в этом режиме изменяется незначительно.
Основные параметры стабилитрона
Стабилизатор тока на транзисторе
Для создания рабочей схемы применяют обратное включение полупроводникового прибора. На анод подают «минус» источника питания. На катод – «плюс».
ВАХ стабилитрона
С помощью измерительной аппаратуры можно составить по точкам распределение электрических величин. На рисунке отмечены основные характеристики стабилитрона, которые нужно учитывать при расчете стабилизатора напряжения. Показаны уровни, определяющие:
- начало пробоя;
- рабочий режим (Uст, Iст);
- максимально допустимое значение (Uобр, Imax).
Серийные приборы рассматриваемой категории способны стабилизировать напряжение в диапазоне от 0,6 до 210 V. Допустимый ток (Imax) ограничен мощностью рассеивания. Для улучшения этого параметра применяют монтаж на радиаторе через слой термопасты, эффективную пассивную и принудительную вентиляцию. Отмеченное на графике значение Imin соответствует уровню сохранения работоспособности перехода в обычном режиме. Для стабилизации используют участок ΔU, который характеризуется незначительным изменением напряжения при достаточно большом увеличении силы тока в обратном направлении (ΔI).
Виды стабилизаторов напряжения
В зависимости от требований, предъявляемых к прибору, существует большое количество разновидностей. Это могут быть как компактные устройства для одной единицы техники, так и крупные системы. Обслуживающие цеха заводов и фабрик. По этому принципу бывает:
- Стабилизатор напряжения однофазный , который обслуживает простую электрическую сеть, состоящую из одной фазы. Такая проводка в основном используется в частных и квартирных домах, объектах социальной сферы.
- Трехфазный стабилизатор напряжения необходим на промышленных объектах, на которых сеть состоит из трех фаз и равняется 380 В. Он представляет собой три соединенных между собой единой схемой контроля однофазных девайса.
В зависимости от принципа работы, положенного в основу устройства, выделяют:
- релейный;
- электронный;
- электромеханический;
- феррорезонансный;
- инверторный приборы.
Релейный стабилизатор напряжения
Одним из самых первых приборов, которые применялись в быту, являлся параметрический стабилизатор напряжения. Однако по современным меркам такой прибор плохо справляется с поставленными задачами, поэтому ему на смену пришел релейный стабилизатор постоянного напряжения. Он представляет собой автоматический трансформатор, снабженный коммутационным реле.
Стабилизация параметров электрического тока достигается за счет подбора управляющим блоком нужного количества обмоток и их витков, которые следует задействовать. Выравнивание происходит как бы ступенчато, поэтому возможно искажение синусоиды и ограниченность выходного напряжения. Стоят такие девайсы сравнительно недорого, поэтому для домашнего использования они вполне приемлемы.
Электронный стабилизатор напряжения
Другим типом приборов, выполняющих ступенчатую стабилизацию, считается электронный стабилизатор напряжения, который используют для телевизора и другой бытовой техники. Устройство еще называют дискретным. В его основе лежат проводники – тиристоры или симисторы, поэтому прибор имеет два подвида. Стоит стабилизатор несколько дороже релейного аналога. Оба вида имеют высокий коэффициент полезного действия, быстрое срабатывание и бесшумную работу. Все эти преимущества делают устройства одними из самых продаваемых в своем классе.
Электромеханический стабилизатор напряжения
В основе электромеханических моделей лежит принцип перемещения угольного электрода по обмоткам трансформатора с помощью электропривода. По другому девайсы еще называют сервоприводными или сервомоторными. Такой стабилизатор напряжения – это настоящая находка для загородных домов и дач. Устройство работает тихо, плавно изменяя параметры тока. Дополнительными плюсами являются компактные размеры и низкая стоимость.
Феррорезонансный стабилизатор напряжения
На ином принципе основан этот стабилизатор напряжения, энергия в котором преобразуется благодаря эффекту феррорезонанса между конденсатором и трансформатором. Устройство имеет внушительные размеры и вес, а также издает значительный уровень шума при работе. Прибор не способен работать при перегрузках, поэтому в частных домах его практически не используют. Основная область применения – помещения с повышенной влажностью или постоянными изменениями температуры воздуха.
Инверторный стабилизатор напряжения
Самым эффективным и одновременно дорогим считается инверторный стабилизатор напряжения, который используют для дома, офиса и на крупных предприятиях. При входе в прибор переменный ток преобразуется в постоянный и обратно на выходе. Он способен справляться с разным диапазоном от 115 до 290 В. Другими дополнительными плюсами являются быстрая работа, малые размеры и наличие дополнительных параметров и функций.
Стабилизированный источник питания 12В / 30А
Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, что обеспечивает ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов обеспечат ток до 30 А. Можно изменением количества транзисторов и получить желаемое значение тока. Микросхема выдает ток около 800 мА.
На его выходе установлен предохранитель в 1 А для защиты от больших переходных токов. Нужно обеспечить хороший теплоотвод от транзисторов и микросхемы. Когда ток через нагрузку большой, мощность рассеиваемая каждым транзистором также увеличивается, так что избыточное тепло может привести к пробою транзистора.
В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс у одного и того же типа транзисторов. Диоды моста рассчитаны не менее, чем на 100 А.
Примечания
Наиболее затратным элементом всей конструкции, пожалуй, является входной трансформатор, Вместо него возможно использование двух последовательно соединенных батарей автомобиля. Напряжение на входе стабилизатора должно быть на несколько вольт выше требуемого на выходе (12В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать достаточно большой пиковый прямой ток, обычно, 100А или более.
Через LM 7812 будет проходить не более 1 А, остальная часть обеспечивается транзисторами.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов соединены параллельно. Рассеиваемая каждым из них мощность – это 1/6 часть общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальному рассеиванию, при этом потребуется крупногабаритный радиатор.
Для эффективного отвода тепла от радиатора, может быть хорошей идеей применение вентилятора или радиатора с водяным охлаждением. Если блок питания нагружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Для предотвращения пробоя микросхемы на ее выходе стоит предохранитель в 1 А. Нагрузка 400 МОм только для тестирования и не входит в окончательную схему.
Вычисления
Данная схема отличная демонстрация законов Кирхгофа. Входящая в узел сумма токов, должна быть равна сумме токов выходящих из этого узла, а сумма падений напряжений на всех ветвях, любого замкнутого контура цепи должна быть равна нулю. В нашей схеме, входное напряжение 24 вольт, из них 4В падения на R7 и 20 В на входе LM 7812, т.е 24 -4 -20 = 0. На выходе суммарный ток нагрузки 30А, регулятор поставляет 0.866А и 4.855А каждый из 6 транзисторов: 30 = 6 * 4.855 + 0.866.
Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.86А коэффициент усиления по постоянному току для каждого транзистора должен быть не менее 35.
TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке будет 4В. Рассеиваемая на нем мощность, вычисляется по формуле P= (4 * 4) / 100, т.е 0.16 Вт. Желательно, чтобы этот резистор был мощностью 0.5 Вт.
Входной ток микросхемы поступает через резистор в цепи эмиттера и переход Б-Э транзисторов. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по цепи базы, и 40.3мА через R = 100 Ом. 871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет только около 5 мА и практически не должен греться.
Тестирование и ошибки
Во время первого испытании, не надо подключать нагрузку. Вначале измеряем вольтметром напряжение на выходе, оно должно быть 12 вольт, или не сильно отличающаяся величина. Затем подключаем сопротивление около100 Ом, 3 Вт в качестве нагрузки.Показания вольтметра не должны измениться. Если вы не видите 12 В, то, предварительно выключив питание, следует проверить корректность монтажа и качество пайки.
Один из читателей, получил на выходе 35 В, вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть КЗ любого из транзисторов, придется отпаять все 6 для проверки мультиметром переходов коллектор-эмиттер.
Компенсационные стабилизаторы
В компенсационных стабилизаторах производится сравнение эталонного (опорного) потенциала с выходным. Разница через контур отрицательной обратной связи поступает на базу ключевого транзистора, управляя величиной его открытия.
Точность стабилизации зависит от точности формирования опорного напряжения. Так как устройство сравнения потребляет малый ток, то опорный потенциал можно сформировать при помощи параметрического стабилизатора на стабилитроне и резисторе.
Компенсационная схема
Еще больше повысить эксплуатационные характеристики можно, используя источник тока вместо токоограничительного резистора. В качестве такого источника наиболее удобно применять полевой транзистор. Компенсационные устройства обладают хорошими характеристиками, поэтому большинство производителей элементной базы выпускает готовые модули, позволяющие создавать конструкции с минимумом элементов.
Стабилизированный регулируемый блок питания с защитой от перегрузок
Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2…1,3 В, но иногда необходимо напряжение 0,5…1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.
Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2…37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.
Рис.1. ИМС КР142ЕН12А
На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.
Рис.2. Регулируемый БП на ИМС КР142ЕН12А
Нормативная база применения УЗИП
Что такое УЗИП? Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002 «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».
Согласно этому ГОСТу «Устройство для защиты от импульсных перенапряжений (УЗИП): устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсов тока. Это устройство содержит, по крайней мере, один нелинейный элемент». Стандарт распространяется на устройства для защиты электрических сетей и электрооборудования при прямом или косвенном воздействии грозовых или иных переходных перенапряжений. Данные устройства предназначены для подсоединения к силовым цепям переменного тока частотой 50-60 Гц на номинальное напряжение до 1000В (действующее значение) или 1500В постоянного тока.
В зависимости от класса испытаний УЗИП делятся на 3 типа.
Испытания класса I предназначены для имитации частично направленных грозовых импульсов тока. УЗИП, подвергаемые таким испытаниям, рекомендуются для установки на линейных вводах в здания, защищённые молниезащитными системами, а также при воздушном вводе питания. Характерной особенностью данного класса является испытание импульсным током Iimp c формой волны 10/350 мкс (1). Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up, который измеряется при In. Это «параметр, характеризующий УЗИП в части ограничения напряжения на его выводах, который выбран из числа предпочтительных значений». Его значение всегда выше остаточного напряжения Ures , т.е. пикового значения, появляющегося на выводах УЗИП вследствие прохождения разрядного тока заданной амплитуды. Up не должен превышать стойкость электрооборудования к импульсному напряжению, определённому в ГОСТ Р 50571.19-2000. Поэтому принято, что для УЗИП 1-го класса Up не превышает 4 кВ.
Стандартный испытательный импульс
Испытания класса II предназначены для имитации наведённого в проводниках под действием электромагнитного поля импульса. УЗИП, подвергаемые таким испытаниям (УЗИП 2-го класса), предназначены для установки после УЗИП 1-го класса в промежуточные шкафы, либо во вводной шкаф, если отсутствует вероятность попадания части прямого тока молнии в систему электроснабжения. Испытания проводятся номинальным разрядным током In и максимальным разрядным током Imax . Оба импульса имеют форму волны 8/20 мкс, но разную амплитуду. При этом Imax > In. Импульс In УЗИП должен выдержать многократно при условии его остывания до комнатной температуры в промежутке между импульсами. Обычно количество выдерживаемых импульсов от 5 до 15 (по ГОСТу количество не установлено и определяется производителем, по МЭКу – 15 импульсов). Импульс Imax УЗИП должен выдержать однократно, при этом его дальнейшая работа в соответствии с заявленными параметрами не гарантируется (но возможна). Уровень напряжения защиты Up для устройств 2-го класса не должен превышать 2,5 кВ.
Испытания класса III также имитируют наведённый импульс, но испытываются комбинированной волной напряжения 1,2/50 мкс и тока 8/20 мкс. При этом в параметрах указывается напряжение разомкнутой цепи Uoc и номинальный In и максимальный Imax токи. Уровень напряжения защиты Up для 3-го класса не должен превышать 1,5 кВ. Это тот уровень, который должна выдерживать техника, даже не проходившая испытаний на устойчивость к микросекундным импульсным перенапряжениям. Поэтому данные устройства рекомендуется использовать в непосредственной близости от защищаемого оборудования (желательно не далее 5-7 метров, а в общем, чем ближе, тем лучше).
Ещё несколько важных параметров, которые необходимо знать для подбора УЗИП.
Максимальное длительное рабочее напряжение Uc — действующее значение переменного или постоянного тока, которое длительно подаётся на выводы УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения при различных нештатных режимах работы сети.
Номинальный ток нагрузки IL — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Данный параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. Так как большинство УЗИП подключаются параллельно цепи, то данный параметр у них не указывается.