Что называется падением напряжения на участке цепи

Падение напряжения на нескольких резисторах

Убедились, что одна лампочка может поглотить всю энергию, выделяемую электронами, что приводит к падению напряжения, равному напряжению батареи. Но что, если в цепи две или более лампочки одна за другой? Поскольку одна лампочка «съедает» всю энергию, останется ли что-нибудь для других?

Напряжение нити составляет 1,5 вольта. Что, если разрежем нить в этой точке и соединим обе части проволокой? Что-нибудь изменится?

Теоретически, вместо одной лампочки у нас теперь две с сопротивлением по 30 Ом. Но на практике ничего не изменилось. После прохождения половины исходной нити накала, то есть первых 30 Ом, напряжение составляет 1,5 В, и этот кусок вставленного провода не добавляет здесь ничего нового.

Конечно нить можно разделить на любое количество частей и ситуация останется прежней. Итак, давайте изменим подход. Оставьте нить накала целиком, чтобы она имела сопротивление 60 Ом, и положите рядом другую такую ??же. Как будет себя вести схема? Поскольку знаем, что 60 Ом может забрать всю энергию, останется ли от нее для второй нити накала? Измеряем напряжение между ними.

Хотя каждая нить имеет по 60 Ом, по какой-то причине они решили разделить энергию поровну. Как это возможно? Раньше одна 60-омная нить накала потребляла всю энергию, но теперь она отдает половину другой. Откуда такое сотрудничество?

Все происходит из-за того, что закон Ома действительно сложно обмануть. Он не влияет на сопротивление лампы или напряжение, подаваемое батареей, но может управлять током, протекающим в цепи. Когда была одна лампочка, она забирала всю энергию, а ток, протекающий в цепи, составлял 0,05 А. После вставки второй лампочки общее сопротивление цепи увеличивается в два раза, и снова применяя закон Ома находим, что текущее значение уменьшается до значения всего 0,025 А. Это в корне меняет ситуацию.

Во-первых, удвоение тока означает, что электроны текут в цепи вдвое медленнее. А поскольку они текут вдвое медленнее, сила столкновения с атомами нити в два раза меньше. В результате электроны больше не оставляют всю энергию в нити 60 Ом, а только ее половину. С одной стороны это хорошо, потому что на прохождение второй лампочки остается еще половина энергии. Обратной стороной этого является то, что обе лампочки будут светить заметно меньше.

Если бы было три лампочки, каждая из них получала бы 1 вольт, или 1/3 всей энергии. Четыре лампочки – это деление энергии на четыре и так далее. Такое идеально равномерное распределение энергии, конечно имеет место только тогда, когда лампочки имеют одинаковое сопротивление. Если бы в цепи были лампочки с сопротивлением 30 Ом и 60 Ом, то падение напряжения было бы пропорционально распределено – 1 В на первой и 2 В на второй.

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования

Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения

Расчет сечения провода электропроводки по мощности подключаемых электроприборов

Для выбора сечения жил провода кабеля при прокладке электропроводки в квартире или доме нужно проанализировать парк имеющихся электробытовых приборов с точки зрения одновременного их использования. В таблице представлен перечень популярных бытовых электроприборов с указанием потребляемого тока в зависимости от мощности.

Вы можете узнать потребляемую мощность своих моделей самостоятельно из этикеток на самих изделиях или паспортам, часто параметры указывают на упаковке. В случае если сила потребляемого тока электроприбором не известна, то ее можно измерять с помощью амперметра.

Обычно мощность потребления электроприборов указывается на корпусе в ваттах (Вт или VA) или киловаттах (кВт или kVA). 1 кВт=1000 Вт.

Таблица потребляемой мощности/силы тока бытовыми электроприборами

ЭлектроприборПотребляемая мощность, ВтСила тока, А
Стиральная машина2000 – 25009,0 – 11,4
Джакузи2000 – 25009,0 – 11,4
Электроподогрев пола800 – 14003,6 – 6,4
Стационарная электрическая плита4500 – 850020,5 – 38,6
СВЧ печь900 – 13004,1 – 5,9
Посудомоечная машина2000 – 25009,0 – 11,4
Морозильники, холодильники140 – 3000,6 – 1,4
Мясорубка с электроприводом1100 – 12005,0 – 5,5
Электрочайник1850 – 20008,4 – 9,0
Электрическая кофеварка630 – 12003,0 – 5,5
Соковыжималка240 – 3601,1 – 1,6
Тостер640 – 11002,9 – 5,0
Миксер250 – 4001,1 – 1,8
Фен400 – 16001,8 – 7,3
Утюг900 –17004,1 – 7,7
Пылесос680 – 14003,1 – 6,4
Вентилятор250 – 4001,0 – 1,8
Телевизор125 – 1800,6 – 0,8
Радиоаппаратура70 – 1000,3 – 0,5
Приборы освещения20 – 1000,1 – 0,4

Ток потребляют еще холодильник, осветительные приборы, радиотелефон, зарядные устройства, телевизор в дежурном состоянии. Но в сумме эта мощность составляет не более 100 Вт и при расчетах ее можно не учитывать.

Если Вы включите все имеющиеся в доме электроприборы одновременно, то необходимо будет выбрать сечение провода, способное пропустить ток 160 А. Провод понадобится толщиной в палец! Но такой случай маловероятен. Трудно представить, что кто-то способен одновременно молоть мясо, гладить утюгом, пылесосить и сушить волосы.

Пример расчета. Вы встали утром, включили электрочайник, микроволновую печь, тостер и кофеварку. Потребляемый ток соответственно составит:

7 А + 8 А + 3 А + 4 А = 22 А

С учетом включенного освещения, холодильника и в дополнение, например, телевизора, потребляемый ток может достигнуть 25 А.

Выбор сечения провода для подключения электроприборов к трехфазной сети 380 В

При работе электроприборов, например, электродвигателя, подключенных к трехфазной сети, потребляемый ток протекает уже не по двум проводам, а по трем и, следовательно, величина протекающего тока в каждом отдельном проводе несколько меньше. Это позволяет использовать для подключения электроприборов к трехфазной сети провод меньшего сечения.

Для подключения электроприборов к трехфазной сети напряжением 380 В, например электродвигателя, сечение провода для каждой фазы берется в 1,75 раза меньше, чем для подключения к однофазной сети 220 В

Внимание, при выборе сечения провода для подключения электродвигателя по мощности следует учесть, что на шильдике электродвигателя указывается максимальная механическая мощность, которую двигатель может создать на валу, а не потребляемая электрическая мощность

Например, нужно подключить электродвигатель потребляющий мощность от сети 2,0 кВт. Суммарный ток потребления электродвигателем такой мощности по трем фазам составляет 5,2 А. По таблице получается, что нужен провод сечением 1,0 мм2, с учетом вышеизложенного 1,0 / 1,75 = 0,5 мм2. Следовательно, для подключения электродвигателя мощностью 2,0 кВт к трехфазной сети 380 В понадобится медный трехжильный кабель с сечением каждой жилы 0,5 мм2.

Гораздо проще выбрать сечение провода для подключения трехфазного двигателя, исходя из величины тока его потребления, который всегда указывается на шильдике. Например, ток потребления двигателя мощностью 0,25 кВт по каждой фазе при напряжении питания 220 В (обмотки двигателя подключены по схеме «треугольник») составляет 1,2 А, а при напряжении 380 В (обмотки двигателя подключены по схеме «звезда») всего 0,7 А.

Взяв силу тока, указанную на шильдике, по таблице для выбора сечения провода для квартирной электропроводки выбираем провод сечением 0,35 мм2 при подключении обмоток электродвигателя по схеме «треугольник» или 0,15 мм2 при подключении по схеме «звезда».

Влияние длины и сечения кабеля на потери по напряжению

Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:

из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.

При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.

Почему падает напряжение и как это зависит от длины и сечения проводников

Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.

Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:

  • удельного сопротивления материала – ρ;
  • длины отрезка проводника – l;
  • площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.

Все четыре параметра связывает следующее соотношение:

очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.

Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).

Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.

Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.

Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.

Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.

К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Причины падения напряжения


Перекос фаз в трехфазной цепи Прежде всего нужно разобраться: это вина поставщика электроэнергии или потребителя. Проблемы с сетью возникают по таким причинам:

  • износ линий электропередач;
  • недостаточная мощность трансформаторов;
  • дисбаланс мощности или перекос фаз.

Эти проблемы связаны с поставщиком, самостоятельно их решить невозможно. Чтобы понять, правильно или нет работают высоковольтные линии, придется вызывать представителей энергосбыта. Они сделают замеры и составят заключение.

Удостовериться, что вина падения не связана с поставщиком, можно самостоятельно. Прежде всего, стоит выяснить у соседей, есть ли у них подобные проблемы. Для измерения напряжения в быту подойдет мультиметр. Его стоимость до 1000 рублей. Если прибор на входе в квартиру показывает нормальное напряжение, причину нужно искать в домашней сети.

Падать напряжение может из-за большой протяженности проводки. Когда длина сети превышает 100 метров, а сечение проводников 16 мм, колебания станут регулярными. Чтобы исправить ситуацию, придется менять проводку.

Виновником может быть неправильное соединение проводов, идущих от ЛЭП к дому. Иногда вопреки требованиям безопасности соединяют медные провода с алюминиевыми или медные проводники соединены вместо клемм скруткой. Клеммы и зажимы изготовлены из некачественных материалов, либо срок их годности вышел.

Возможно, неисправность заключается в самом вводном аппарате. В этом случае его следует заменить.

Базовые формулы определения напряжения

Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.

Через силу тока и сопротивление

ЗначениеФормула
Базовый расчёт напряжения на участке цепиU=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах
Определение напряжения в цепи переменного токаU=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи

Закон Ома имеет исключения для применения:

  1. При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
  2. При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
  3. Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
  4. При нахождении под воздействием высокого напряжения проводников или диэлектриков.
  5. Во время процессов, проходящих в устройствах на основе полупроводников.
  6. При работе светодиодов.

Через мощность и силу тока

При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.

При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.

При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.

Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.

Через работу и заряд

Методика расчёта используется в лабораторных задачах и на практике не применяется.

Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.

Расчёт сопротивления

При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.

ЗначениеФормула
Расчет сопротивления одного элементаR=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах
Расчет для однородного проводникаR=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2)

Последовательное подключение

При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2+…+Rn, где R=R1+R2+…+Rn — значения сопротивления элементов в Омах.

Параллельное подключение

Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.

Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2+…+1/Rn.

В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.

Пути снижения потерь мощности в кабеле

Наибольшее количество потерь обычно связано с установкой провода и его эксплуатацией. Основной способ снизить их — это максимально уменьшить сопротивление на всех участках электросетей. Несмотря на то что очевидное решение – увеличить сечение проводников, при котором уменьшается сопротивление, оно приводит к удорожанию монтажа и материала. ПУЭ рекомендуют использовать во внутридомовой разводке провода с сечением 2,5 мм2, а в бытовых сетях – 5 мм2.

Также можно использовать меры по снижению нулевого провода. В однофазной двухпроводной схеме предусмотрено получение тока по проводу-фазе, после чего он уходит по другому проводу – ноль. Снижение сопротивления фазы – трудоемкое и затратное занятие, в отличие от нулевого провода. Для этого проводится повторное заземление нуля на каждой опоре линии электропередач, то есть, по сути, проводится второй провод от нуля домашней сети до нуля трансформатора.

Помимо этого, значительная экономия электроэнергии происходит при содержании электросети в надлежащем состоянии. Для этого необходимо регулярно проверять прочность и плотность контактов, заменить все скрутки и подобные им контакты современными клеммниками. Это позволит снизить потери до минимума.

Также можно прибегнуть к следующим мерам:

  1. При использовании воздушных линий при обрыве линий электропередач образуется зона локального повышения сопротивления так называемой скрутки, где происходит деформация составляющих и нагрев.
  2. В качестве замены нужно взять самонесущий алюминиевый изолированный (СИП) провод. «Самонесущий» означает, что для него не требуется дополнительного троса для крепежа линии, он выдерживает свой вес под порывом ветра или снега.
  3. Замена кабеля на столбах. Для этого потребуется материал типа СИП-2А, СИП-3, СИП-4 с сечением не меньше 15 мм2, он способен пропустить до 63 А тока, что равно 14 кВт на одну фазу и 42 Квт на три. Такой элемент прослужит долго за наличия двойной изоляции и особым внешним покрытием.
  4. Для уменьшения расхода внутри провода используют стабилизатор на входе к домашней сети или промышленного строения. Стабилизатор обеспечивает ±5 % на выходе, при колебаниях на входе — на ±30 %.
  5. Для снижения можно использовать трехфазный счетчик, подключенный к сооружению. За счет трех фаз уменьшается количество тока, идущего по каждой из них.

Падение напряжения лампочки

Давайте возьмем 3-х вольтовую батарею и подключим ее к маленькой лампочке, которая точно соответствует этому напряжению. Лампочка будет светиться благодаря электричеству, идущему от батареи. Чтобы узнать, сколько тока проходит через него, можем либо подключить амперметр, либо измерить сопротивление лампочки. Предположим оно составляет 60 Ом, следовательно, применив закон Ома, получим значение тока 0,05 А.

То что в такой схеме светит лампочка, не должно удивлять. Есть напряжение, значит есть энергия. Электричество течет, поэтому энергия поступает в лампочку. Колба получает энергию, поэтому светит и нагревается.

Нить лампы накаливания – большое препятствие для ускорения электронов, несущих энергию. Не случайно она изготовлена из чрезвычайно тонкой и плохо проводящей вольфрамовой проволоки. Втекая в нить, электроны сжимаются и сталкиваются с ее атомами и даже друг с другом. Эти столкновения заставляют электроны на мгновение замедляться и терять энергию.

Атомы нити накала все больше и больше вибрируют, и нить нагревается до белизны. Вот так лампочка начинает светиться за счет маленьких электронов. Далее они с помощью остатка своих сил и их коллег, давящих сзади, наконец достигают положительного вывода батареи, где могут спокойно завершить свою миссию.

Когда у электронов много энергии, это высокое напряжение, а если мало энергии, напряжение низкое. Итак, поскольку нить накала – это место, где энергия электронов уменьшается, это означает что также должно быть место, где каким-то образом падает напряжение.

Напряжение батареи составляет 3 В. Электроны движутся от отрицательного полюса, потенциал которого обычно принимается равным 0 В, к положительному полюсу с потенциалом +3 В. Если подключим вольтметр на обе стороны батареи, он покажет разность потенциалов 3 В.

Если бы нить накала была достаточно большой, чтобы могли приложить один из щупов вольтметра посередине ее длины, оказалось бы что напряжение составляет только половину напряжения батареи, то есть 1,5 В. Поскольку электроны, протекающие через нить, отдают ей всю свою энергию, логично что преодолев половину ее длины, они отдадут ей ровно половину этой энергии. Половина энергии = половина напряжения, показанного на вольтметре.

Если продвигать щуп дальше, напряжение будет падать, пока не окажется за нитью накала, и измеритель покажет значение 0 В. То есть вначале напряжение составляло 3 В. Перемещая щуп вольтметра по нити накала, оно постепенно упало до 0 В. Таким образом можем сказать, что падение напряжения на лампочке составляет 3 В. На «физическом» уровне говорят, что количество энергии, подводимой к лампочке, составляет ровно 3 джоуля на кулон.

Варианты определения ΔU

Метод векторов

В ходе проектирования электрической сети в основе лежит нагрузка, работоспособность которой необходимо обеспечить. Если кабель будет выбран неправильно, ΔU на нем не позволит правильно работать этой нагрузке. Асинхронные двигатели не достигнут заданных оборотов, трансформаторы на вторичных обмотках не обеспечат номинальные напряжения и т.д., и т.п. Для однофазной сети нагрузка разделяется на активную и реактивную составляющие.

Трехфазная сеть представляется как три самостоятельные однофазные сети. Они называются схемами замещения. Этот метод обеспечивает достаточно точные результаты, если нагрузка симметрична. Если симметрия нарушается, то анализ причин, которые этот процесс вызвали, также можно выполнить, используя этот метод. На основании известных величин можно построить векторную диаграмму и, меняя длину векторов соответственно поставленной задаче, определять те величины, которые необходимы.

Схема 1

Например, известны параметры, которые необходимы для нормальной работы нагрузки. Параметры линии также известны. Следовательно, задача сводится к определению векторного напряжения U1. Шаги, приводящие к появлению искомого вектора, показаны далее.  

Схема 2

Длина вектора и его направление определяются исходя из закона Ома и направления вектора напряжения, определяющего ток (векторы тока и напряжения по направлению совпадают). Вектор напряжения, который получается как результат сложения активной и реактивной составляющих нагрузки (IR+IХ), – это и есть ΔU в линии, соединяющей источник напряжения U1 с нагрузкой. Из полученных векторов просто получить также и потери напряжения. Для этого векторы U1 и U2 совмещаются так, чтобы направление обоих было таким же, как у вектора U2. Разница между ними в длине – это будут потери напряжения.

Схема падения и потери напряжения

Определение ΔU и потерь напряжения

Таблицы Кнорринга

Но заниматься построением векторов довольно-таки нудно. Тем более что за время существования потребности в проектировании электросетей для стандартных ситуаций придуманы решения более быстрые. К ним относятся таблицы Кнорринга. Стандартность ситуации для них состоит в постоянстве напряжения на входе кабеля или иного проводника (переменное напряжение с действующим значением 220 В)

Это важно как для одной фазы, так и для трех фаз. То есть в трехфазной электросети нагрузка должна быть симметричной

Также необходимо располагать величиной сечения токопроводящей жилы (в квадратных миллиметрах), длиной проводника (в метрах) и мощностью в нагрузке (в киловаттах). Получаем произведение мощности на длину, в столбце, начинающемся с подходящего сечения жилы, находим это значение, и в крайнем левом столбце смотрим ΔU на кабеле. Только и всего. Два варианта таблиц для напряжения однофазной и трехфазной электрической сети, а также одна для напряжения 12 В, показанные далее, читатель может использовать для расчетов.

Таблица 1

Таблица 2

Таблица 3

Для всех таблиц принято ограничение – жилы должны быть из меди. Если читателю встретится такое определение, как момент нагрузки, – это как раз и будет число из таблицы Кнорринга для провода, соответствующее произведению мощности на длину.

Точные расчеты по формулам

Если по тем или иным причинам метод векторов и таблицы не устраивают, можно использовать либо формулы, показанные далее, либо калькулятор онлайн, на них основанный. Таких калькуляторов в сети немало, и найти подходящий несложно.

Расчет по формулам ΔU по длине кабеля

Как уменьшить падение напряжения в электрической сети

При выполнении работ по прокладке кабеля сечение провода, взятое по допустимому понижению, превосходит таковую величину, выбранную по нагреву проводника.

Это приводит к удорожанию электричества для потребителя.

Как уменьшить этот показатель?

Ведь от него зависит итоговая цена за 1 кВт электроэнергии.

Опишем несколько способов сделать это.

  • Установить стабилизатор около нагрузки для устойчивости сети.
  • Повысить значение потенциала у начала кабеля, подключившись к отдельному трансформатору.
  • Расположить на небольшом расстоянии от потребителя блок питания или понижающий трансформатор при подключенной нагрузке 12-36 В.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий