Устройство и принцип работы
Производитель выбирает базовые правила функционирования агрегата, но это не влияет на надежность эксплуатации. Отличаются концепции процессом изготовления. Принцип действия трансформатора основывается на двух положениях:
- изменяющееся движение направленных носителей заряда создает переменное магнитное силовое поле;
- влияние на силовой поток, передаваемый через катушку, продуцирует электродвижущую силу и индукцию.
Устройство состоит из следующих частей:
- магнитопровод (сердечник);
- катушка или обмотка;
- основа для расположения витков;
- изолирующий материал;
- охладительная система;
- другие элементы крепления, доступа, защиты.
Работа трансформатора осуществляется по виду конструкции и сочетания сердечника и обмоток. В стержневом типе проводник заключен в обмотках, его трудно рассмотреть. Витки спирали видны, просматривается верх и низ сердечника, ось располагается вертикально. Материал, из чего состоит виток, должен хорошо проводить электричество.
В изделиях броневого типа стержень скрывает большую часть оборотов, он ставится горизонтально или отвесно. Тороидальная конструкция трансформаторов предусматривает расположение на магнитопроводе двух независимых обмоток без электрической связи между собой.
Магнитная система
Выполняется из легированной трансформаторной стали, феррита, пермаллоя с сохранением геометрической формы для продуцирования магнитного поля агрегата. Проводник конструируется из пластин, лент, подков, его изготавливают на прессе. Часть, на которой располагается обмотка, называются стержнем. Ярмо — это элемент без витков, выполняющий замыкания цепи.
Принцип действия трансформатора зависит от схемы стоек, которая бывает:
- плоская — оси ярм и сердечников находятся в единой плоскости;
- пространственная — продольные элементы устраиваются в разных поверхностях;
- симметричная — одинаковые по форме, размеру и конструкции проводники расположены ко всем ярмам аналогично другим;
- несимметричная — отдельные стойки отличаются по виду, габаритам и ставятся в разных положениях.
Если предполагается, что через обмотку, которую называют первичной, протекает постоянный ток, то магнитный провод делают разомкнутым. В остальных случаях сердечник закрытый, он служит для замыкания силовых линий.
Обмотки
Делают в виде совокупности витков, устраиваемых на проводниках квадратного сечения. Форма используется для эффективной работы и повышения коэффициента заполнения в окне магнитопровода. Если требуется увеличить сечение сердечника, то его выполняют в виде двух параллельных элементов, чтобы уменьшить возникновение вихревых токов. Каждый такой проводник называется жилой.
Стержень оборачивается бумагой, покрывается эмалевым лаком. Иногда два сердечника, расположенных параллельно, заключают в общую изоляцию, комплект называется кабелем. Обмотки различают по назначению:
- основные — к ним подводится переменный ток, выходит преобразованный электроток;
- регулирующие — в них предусмотрены отводы для трансформации напряжения при невысокой силе тока;
- вспомогательные — служат для снабжения своей сети с мощностью меньше номинального показателя трансформатора и подмагничивания схемы постоянным током.
Способы обкручивания:
- рядовая обмотка — обороты делают в направлении оси по всей длине проводника, последующие витки наматывают плотно, без промежутков;
- винтовое обматывание — многослойная обвивка с просветами между кольцами или заходом на соседние элементы;
- дисковая накрутка — спиральный ряд выполняется последовательно, в круге обвивание производится в радиальном порядке по внутреннему и наружному направлению;
- фольговая спираль ставится из алюминиевого и медного широкого листа, толщина которого колеблется в пределах 0,1-2 мм.
Принцип действия и конструкция трансформаторов тока
Первичная обмотка ТТ включается в разрез линейного провода (последовательно с нагрузкой), в котором измеряется сила тока. Вторичная обмотка замкнута на измерительное устройство с малым сопротивлением. Поэтому, в отличие от силового трансформатора, для которого режим короткого замыкания является аварийным, нормальным режимом для измерительного ТТ являются условия, близкие к КЗ, так как сопротивление во вторичной цепи у него мало.
Через первичную обмотку, имеющую определённое количество витков, течет ток. Вокруг катушки наводится магнитный поток, который улавливается магнитопроводом. Пересекая перпендикулярно ориентированные витки вторичной обмотки, магнитный поток формирует электродвижущую силу. Под влиянием последней возникает ток, протекающий по катушке и нагрузке на выходе. Одновременно на зажимах вторичной цепи образуется падение напряжения.
По конструктиву и применению ТТ условно подразделяются на несколько разновидностей:
- • Опорные монтируются на опорной плоскости.
- • Проходные используются в качестве ввода и устанавливаются в металлических конструкциях, в проемах стен или потолков.
- • Встраиваемые размещаются в полости оборудования: электрических выключателей, генераторов и других электроаппаратов и машин.
- • Разъемные не имеют своей первичной обмотки. Их магнитопроводы из двух половинок, стягиваемых болтами, можно размыкать и закреплять вокруг проводников под током. Эти проводники исполняют роль первичных обмоток.
- • Шинные изготавливаются тоже без первичных обмоток — их роль выполняют пропущенные сквозь окна магнитопроводов ТТ токоведущие шины распредустройств.
- • Накладные надеваются сверху на проходной изолятор.
- • Переносные предназначаются для лабораторных и контрольных измерений.
По выполнению первичной обмотки ТТ подразделяются на одновитковые и многовитковые, а по числу вторичных обмоток — на устройства с одной обмоткой и с несколькими вторичными обмотками (до четырёх, пяти). По числу ступеней трансформации — на одноступенчатые и каскадные.
К общей классификации трансформаторов обоих типов относятся: количество коэффициентов трансформации (однодиапазонные и многодиапазонные), критерии по материалу диэлектрика между первичной и вторичной обмотками и по материалу внешней изоляции — маслонаполненные, газонаполненные, сухие, с литой, фарфоровой и прессованной изоляцией, с вязкими заливочными компаундами, комбинированные бумажно-масляные. ТТ и ТН устанавливаются на открытом воздухе, в закрытых и в подземных установках, на морских и речных судах, внутри оболочек электроустановок и связываются контрольными проводами и кабелями с оборудованием вторичных цепей. По диапазону рабочего напряжения выделяют трансформаторы, функционирующие в устройствах до 1000 В и выше 1000 B. Трансформаторы также классифицируются по классу точности.
Габаритный чертеж
Габаритный чертеж – документ, содержащий изображение изделия (трансформатора) с габаритными, установочными и присоединительными размерами.
Для этого необходимо знать наибольшие длину, высоту и ширину трансформатора, то есть габаритный размер.
Для определения установочных и присоединительных размеров потребуются значения расстояния между отверстиями крепления, диаметров отверстий под болты, присоединительные размеры резьбы и другие данные, позволяющие измерить величины элементов. Это поможет установить трансформатор или присоединить его к другому оборудованию.
По габаритным чертежам не изготавливают изделия, в них не отражены данные для изготовления и сборки. Он максимально прост и только схематично указывает на характеристики устройства.
Чтобы присоединить трансформатор к другому устройству. Нужно обозначить установочные и присоединительные размеры с предельными отклонениями.
Устройство
Итак, поговорим о том, как устроен трансформатор, на примере простейшего однофазного трансформатора. Состоит он из двух и более обмоток (1, 2), расположенных на сердечнике (3). Сердечник – это магнитопровод или устройство для прохождения магнитного потока с определенными потерями, зависящими от материала, из которого он выполнен.
Если трансформатор работает в низкочастотной цепи, например, в электросети с частотой 50 Гц, то сердечник набирается из тонких пластин электротехнической стали толщиной 0.3-0.5 мм (или другого магнитомягкого материала), изолированных друг от друга диэлектриком. Сами же тонкие пластины используются для снижения потерь в виде тепла на вихревые токи, или, как их еще называют, токи Фуко. В некоторых случаях сердечник может отсутствовать, а сердечники трансформаторов импульсных источников питания, которые работают на высокой частоте в десятки и сотни килогерц, делают цельными (не из пластин) и зачастую из феррита. У высокочастотных трансформаторов сердечник и вовсе отсутствует.
Одна из обмоток называется первичной — на неё подают напряжение от источника переменного тока, например, из электросети. Остальные обмотки называются вторичными — с них снимают напряжение, к ним подключают нагрузку, измерительные приборы и прочее.
Если необходимо получать разные напряжения на вторичной обмотке или обеспечить возможность подключения первичной обмотки к источникам переменного тока с разным напряжением, то делают отводы от обмоток, или несколько обмоток, соединенных одним из концом между собой.
Отношение напряжения на первичной обмотке к напряжению на вторичной обмотке называют коэффициентом трансформации. То есть если на первичную обмотку подают 220В, а со вторичной обмотки снимают 110В, то коэффициент трансформации (k) такого трансформатора равен:
Соответственно такой трансформатор называют понижающим, если на вторичной обмотке напряжение больше, чем на первичной — он повышающий, а если напряжения равны – разделительный.
Коэффициент трансформации (k) определяется соотношением количества витков первичной обмотки ко вторичной:
Один и тот же трансформатор может быть, как понижающим, так и повышающим это зависит от того, на какую обмотку подаётся напряжение. То есть, понятия «первичная» и «вторичная» обмотки относительны, и применяются в зависимости от конкретного включения трансформатора. Допустим, у нас есть понижающий трансформатора 220/12 вольт, обмотка 12 вольт помечена в документации как вторичная, а 220 как первичная. Но если подать 12 вольт переменного тока на «вторичную» обмотку, то этот трансформатор будет уже повышающим, и на обмотке 220 вольт появится такое напряжение, таким образом, первичная и вторичная обмотки поменяются ролями.
Ток в первичной и вторичной обмотки также соотносится с коэффициентом трансформации, а напряжения в первичной и вторичной обмотках обратно пропорциональны токам вторичной и первичной обмотки. То есть в понижающем трансформаторе на вторичной обмотке напряжение (U2) ниже, чем на первичной (U1) в k раз, а ток вторичной обмотки во столько же раз выше, чем в первичной и наоборот.
Коэффициент полезного действия трансформаторов зависит потерь в сердечнике, сопротивления обмоток, коэффициента мощности, но самое большое влияние на КПД оказывает коэффициент нагрузки. В общем виде формула имеет вид:
На холостом ходу КПД трансформатора стремится к нулю, поскольку никакой полезной работы не совершается, максимальный же КПД стремится к единице и приходится на область от 50% и выше от номинальной мощности, а далее незначительно снижается.
Условное графическое обозначение (УГО) трансформаторов на схемах соответствует их устройству и отражает количество первичных, вторичных обмоток и отводов от них.
Назначение трансформаторов напряжения
Непосредственное включение высокого напряжения требует использования очень громоздких приборов и реле, так как необходимо их изготовление с высоковольтной изоляцией.
Однако изготовить и применять такую аппаратуру практически невозможно, тем более при напряжении, которое равно и превышает 35 кВ. На выставочных композициях процесс описан довольно подробно.
При использовании измерительного трансформатора напряжения открывается возможность осуществлять измерение высокого напряжения, применяя любой стандартный измерительный прибор, у которого расширены пределы измерения, или обмотку реле, которая включается через трансформатор напряжения.
Более того, этот трансформатор обеспечивает хорошую безопасность обслуживания измерительных приборов и реле, изолируя (отделяя) их от высокого напряжения.
Кроме того, использование трансформатора напряжения в электроустановке с высоким напряжением характеризуется повышением точности электрических измерений, точности учета электроэнергии, а также надежностью действий систем релейной защиты и противоаварийной автоматики.
Определение и назначение
Для питания приборов нужны напряжения различных характеристик. Трансформатор — это конструкция для использования индукционной работы магнитного поля. Ленточные или проволочные катушки, объединенные общим потоком, понижают или увеличивают напряжение. В телевизоре применяется 5 В для работы транзисторов и микросхем, питание кинескопа требует нескольких киловольт при использовании каскадного генератора.
Изолированные обмотки располагаются на сердечнике из спонтанно намагниченного материала с определенным значением напряженности. Старые агрегаты использовали существующую частоту сети, около 60 Гц. В современных схемах питания электроприборов применяют импульсные трансформаторы с высокой частотой. Переменное напряжение выпрямляется и преобразовывается при помощи генератора в величину с заданными параметрами.
Напряжение стабилизируется благодаря управляющей установке с импульсно-широтной модуляцией. Высокочастотные всплески передаются трансформатору, на выходе получают стабильные показатели. Массивность и тяжесть приборов прошлых лет сменяется легкостью и небольшими размерами. Линейные показатели агрегата пропорциональны мощности в отношении 1:4, для уменьшения габаритов устройства увеличивается частота тока.
Массивные приборы используют в схемах электроснабжения, если требуется создать минимальный уровень рассеяния помех с высокой частотой, например при обеспечении качественного звука.
Виды трансформаторов по типу магнитопровода
Магнитопровод — это устройство, которое усиливает магнитные потоки, возникающие от электротока в обмотках трансформаторов.
Магнитопроводы (сердечники) являются неотъемлемыми частями различного электрооборудования: катушек индуктивности, реле и пр.
В современном мире существуют различные конструкции трансформаторов, созданных под определенные цели и передачу напряжения разной мощности.
По типу сердечников устройства бывают:
- стержневого типа (применяются, как правило, для трехфазных трансформаторов);
- броневого типа (для трехфазных приборов);
- тороидального типа (используются в трансформаторах, расположенных в различных электротехнических устройствах).
В стержневом типе используются вертикальные сердечники со ступенчатым сечением, которые образуют окружность с горизонтальными ярмами (часть стержней без обмоток). Обмотки в таких магнитопроводах находятся на вертикальных элементах. Система сердечника представляет собой замкнутую цепь.
В броневом типе сердечники имеют форму прямоугольника в сечении и располагаются в горизонтальном положении. Обмотки также выполнены в прямоугольной форме. Такая конструкция довольно сложная в изготовлении, поэтому используется нечасто, на специальных видах устройств.
В тороидальном (кольцевом) типе используют кольцевые ленточные сердечники. Их применяют для создания силовых однофазных трансформаторов. Сердечники делают из электротехнической стали толщиной 0,3 и 0,35 мм, изготовленной по специальной технологии. Материалом для тороидальных магнитопроводов являются феррит или карбонильное железо. Такие сердечники широко распространены в радиоэлектронике.
Конструкции магнитопроводов отличаются способами соединения сердечников с частью стержней, на которых нет обмотки.
- В стыковом соединении части магнитопроводов собирают раздельно. Сначала на вертикальные сердечники устанавливаются обмотки, затем они соединяются при помощи шпилек с верхними ярмом. Монтируется нижнее горизонтальное ярмо. В такой конструкции можно легко поменять обмотки.
- В шихтованном соединении стержни и ярма представляют собой слоенные плиты. Соединение деталей осуществляется вхождением элементов друг в друга в промежутки между слоями сердечника. Такая конструкция более сложная в сборке.
Класс точности измерительных трансформаторов
В реальных трансформаторах преобразование тока сопровождается потерями энергии. Эта энергия расходуется на создание магнитного потока в магнитопроводе, на его нагрев и перемагничивание, а также нагрев проводов обмоток и вторичной цепи. Это создает погрешности в работе трансформаторов.
Класс точности – обобщенная характеристика трансформатора напряжения, определяемая установленными пределами допускаемых погрешностей при заданных условиях работы. Чтобы обозначить класс точности вторичной обмотки, надо знать ее назначение.
Значения классов точности обмоток трансформатора напряжения:
- 0,2, 0,5, 1, 3 – для измерений,
- 3Р, 6Р – для защиты.
Режимы работы
Характеристики трансформаторов определяются условиями работы, где ключевая роль отводится сопротивлению нагрузки. За основу берутся следующие режимы:
- Холостого хода. Выводы вторичной цепи находятся в разомкнутом состоянии, сопротивление нагрузки приравнивается бесконечности. Измерения тока намагничивания, протекающего в первичной обмотке, даёт возможность подсчитать КПД трансформатора. При помощи этого режима вычисляется коэффициент трансформации, а также потери в сердечнике;
- Под нагрузкой (рабочий). Вторичная цепь нагружается определённым сопротивлением. Параметры протекающего по ней тока напрямую связаны с соотношением витков катушек.
- Короткого замыкания. Концы вторичной обмотки закорочены, сопротивление нагрузки равно нулю. Режим информирует о потерях, которые вызываются нагревом обмоток, что на профессиональном языке значится «потерями в меди».
Режим короткого замыкания
Информация о поведении трансформатора в различных режимах получаются опытным путём с использованием схем замещения.
Холостой ход (ХХ)
Такой порядок работы реализуется от размыкания вторичной сети, после чего в ней прекращается течение электротока. В первичной обмотке течет ток холостого хода, составной его элемент — ток намагничивающий.
Когда вторичный ток равен нулю, электродвижущая сила индукции в первичной обмотке целиком возмещает напряжение питающего источника, а потому при пропаже нагрузочных токов, идущий сквозь первичную обмотку ток по своему значению соответствует току намагничивающему.
Функциональное назначение работы трансформаторов вхолостую — определение их важнейших параметров:
- КПД;
- показателя трансформирования;
- потерь в магнитопроводе.
Режим нагрузки
Режим характеризуется функционированием устройства при подаче напряжения на вводы первичной цепи и подключении нагрузки во вторичной. Нагружающий ток идет по «вторичке», а в первичной — суммарный ток нагрузки и ток холостой работы. Этот режим функционирования считается для прибора преобладающим.
На вопрос, как работает трансформатор в основном режиме, отвечает основной закон ЭДС индукции. Принцип таков: подача нагрузки к вторичной обмотке вызывает образование во вторичной цепи магнитного потока, образующего в сердечнике нагружающий электроток. Направлен он в сторону, противоположную его течению, создающегося первичной обмоткой. В первичной цепи паритет электродвижущих сил поставщика электроэнергии и индукции не соблюдается, в первичной обмотке осуществляется повышение электротока до того времени, пока магнитный поток не вернется к своему исходному значению.
Короткое замыкание (КЗ)
Переход прибора в этот режим осуществляется при кратковременном замыкании вторичной цепи. Короткое замыкание — особый тип нагрузки, прилагаемая нагрузка — сопротивление вторичной обмотки — единственная.
Принцип работы трансформатора в режиме КЗ таков: к первичной обмотке приходит незначительное переменное напряжение, выводы вторичной соединяются накоротко. Напряжение на входе устанавливается с таким расчетом, чтобы величина замыкающего тока соответствовала величине номинального электротока устройства. Величина напряжения определяет энергопотери, приходящиеся на разогрев обмоток, а также на активное сопротивление.
Такой режим характерен для приборов измерительного типа.
Исходя из многообразия устройств и видов назначения трансформаторов, можно с уверенностью сказать, что на сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения, как гражданских сетей, так и сетей предприятий промышленности.
Варианты маркировки
На шильде изделия можно встретить различную информацию, которая поможет подобрать правильное устройство исходя из заданных параметров основных характеристик. Маркировка измерительных трансформаторов различается в зависимости от типа устройства.
Так, для трансформаторов тока характерны следующие символы и обозначения:
- «Т» (первая буква) – трансформатор тока;
- вторая буква в обозначении отвечает за тип конструкции. Может быть четыре варианта: «О», «П», «Ф», «Ш», что означает опорный, проходной, фарфор, шинный;
- третьей буквой маркируется материал изоляции – литая (Л), масляная (М) или газовая (Г).
После буквенной маркировке указываются числовые значения, которые характеризуют класс изоляции, климат и коэффициент трансформации. Для примера: маркировка ТОМ-3У2 100/3 читается как «трансформатор тока опорный с масляной изоляцией, 3кВ, для умеренного климата второго класса с коэффициентом 100:3».
У трансформаторов напряжения маркировка отличается большим количеством букв, которые обозначают количество фаз, тип изоляции, класс прибора и его назначение, тип конструкции.
Более подробно это выглядит следующим образом:
- класс трансформатора – Н (напряжение);
- по количеству фаз – одна (О) или три (Т);
- принадлежность – измерительный (И);
- особенности конструкции – заземляемая первичная обмотка (З);
- разновидность – каскадный (К), антирезонансный (А), цельнолитой корпус из полимера (Л), наличие емкостного делителя (ДЕ), фарфоровая покрышка (Ф);
- тип исполнения – масляный (М), сухой (С).
Знание маркировки существенно облегчает выбор измерительных трансформаторов.
Современные измерительные трансформаторы напряжения
Измерительные трансформаторы тока и напряжения, силовые агрегаты, электроприводы и электрические машины, преобразовательная техника и множество другого – всё это вы сможете посмотреть на выставке международного масштаба «Электрооборудование. Светотехника. Автоматизация зданий».
На выставке «Электро» вы найдёте самое современное оборудование и инновационные передовые технологии.
Ежегодно данная выставка представляет общественности самые передовые достижения в области электротехники. Знаковое мероприятие международного масштаба, которое посещают компании не только с нашей страны, но и из более 20 стран мира.
На выставке обязательно будут демонстрироваться современные измерительные трансформаторы напряжения и тока.
Измерительные трансформаторы токаПроизводство тороидальных трансформаторовСиловые трансформаторы типы виды назначение принцип действия
Из какого материала сделать магнитопровод?
Если нужен маломощный преобразователь, подойдет стержневой или броневой магнитопровод. В первом варианте стержни расположены вертикально. Во втором случае стержни имеют прямоугольное сечение и расположены горизонтально. Эта конструкция сложнее, поэтому и встречается реже.
В повышающем часто устанавливаются Ш-образные ферритовые магнитопроводы, сложность в конструкции заключается в необходимости подбора точного размера стержня. Если для сборки используется запчасть с другой техники, толщина пакета пластин определяется на основании мощности. Пластинки вставляются в катушку и стягиваются гайками и шпильками.
Принцип действия и режимы работы
Силовые трансформаторы действуют по такому же принципу, как и обычные трансформаторные устройства. Во входную обмотку поступает электрический ток, колебания которого изменяются по времени. Это приводит к наведению в магнитопроводе изменяющегося магнитного поля. Далее изменяющийся магнитный поток проходит через витки второй обмотки, после чего в ней возникает электродвижущая сила.
Во время проверок и в процессе эксплуатации работа трансформатора может происходить в различных режимах:
- Рабочий режим. В этом случае источник напряжения подключается к первичной обмотке, а нагрузка – к вторичной. Величина тока в каждой обмотке должна быть не более допустимого расчетного значения. В данном режиме обеспечивается устойчивое и надежное питание потребителей в течение длительного времени. В рабочем режиме может создаваться холостой ход и короткое замыкание с целью проверки характеристик трансформаторного устройства.
- Холостой ход. Создается путем размыкания вторичной цепи, чтобы исключить протекание по ней тока. Данный режим позволяет определить коэффициент полезного действия, коэффициент трансформации, потери в стальных деталях, затраченные для намагничивания сердечника.
- Режим короткого замыкания. В этом случае накоротко шунтируются выводы вторичной обмотки. На входе трансформатора напряжение оказывается заниженным до значения, при котором создается вторичный номинальный ток с постоянным значением. Данный способ позволяет установить потери в меди.
- Аварийный режим. К нему относятся любые нарушения работы трансформатора, вызывающие отклонение рабочих показателей за пределы допустимого значения. Особую опасность представляет короткое замыкание, возникающее внутри обмоток. Для предотвращения последствий аварийного режима в силовых трансформаторах устанавливаются автоматические средства защиты и сигнализации. Они поддерживают нормальную работу первичной схемы и полностью отключают ее в случае неисправностей и аварийных ситуаций.
Как устроен и как работает трансформатор
Трансформаторы – это название огромного «семейства», куда входят однофазные, трехфазные, понижающие, повышающие, измерительные и множество других типов трансформаторов. Основное их назначение – преобразование одного или нескольких напряжений переменного тока в другое на основе электромагнитной индукции при неизменной частоте.
Итак, кратко, как работает простейший однофазный трансформатор. Он состоит из трех основных элементов – первичной и вторичной обмоток и объединяющего их в единое целое магнитопровода, на который они как бы нанизаны. Источник подключается исключительно к первичной обмотке, в то время, как вторичная снимает и передает уже измененное напряжение потребителю.
Принцип работы трансформатора
Подключенная к сети первичная обмотка создает в магнитопроводе переменное электромагнитное поле и формирует магнитный поток, который начинает циркулировать между обмотками, индуцируя в них электродвижущую силу (ЭДС). Ее величина зависит от числа витков в обмотках. К примеру, для понижения напряжения необходимо, чтобы в первичной обмотке витков было больше, чем во вторичной. Именно по такому принципу работают понижающие и повышающие трансформаторы.
Важная особенность конструкции трансформатора состоит в том, что магнитопровод имеет стальную структуру, а обмотки, как правило имеющие форму цилиндра, изолированы от него, непосредственно не связаны друг с другом и имеют свою маркировку.