Автоматизированные установки систем водоснабжения, примеры схем

Структура автоматизированной НС

Упрощенная структурная схема автоматизированной НС с частотно-регулируемым электроприводом приведена на рис. 3.

Рис. 3. Структурная схема автоматизированной насосной станции

Электроснабжение НС осуществляется от трансформаторной подстанции ТП. Электроэнергия поступает на распределительное устройство РУ, к которому подключено силовое электрооборудование. Здесь же размещены первичные аппараты для средств учета потребляемой электроэнергии.

Силовое электрооборудование размещено в электрощитовой НС. Оно содержит: силовые шкафы управления СШУ, преобразователь частоты ПЧ и, при необходимости, компенсатор реактивной мощности КРМ. Силовой шкаф управления содержит коммутационный аппарат, с помощью которого осуществляется коммутация питания электропривода М центробежного насоса Н либо к выходу ПЧ, либо к секции РУ.

В машзале НС размещено основное и вспомогательное оборудование НС. Основное оборудование включает насосы ЦН1–ЦН3, электроприводы М1–М3. В состав вспомогательного оборудования входят: дренажные, пожарные, вакуум-насосы; задвижки; вентиляторы; обогреватели и другое оборудование. Управление им производится при помощи исполнительных механизмов ИМ1–ИМn.

Для получения информации о значениях регулируемых параметров служат датчики Д1–Дm.

Сигналы управления и измерительные сигналы от оборудования НС собираются в шкафу управления ШУ. Здесь же происходит их объединение в одну общую информационную линию связи, которая подключается к технологическому контроллеру ТК.

Технологический контроллер реализует общий алгоритм управления НС и обмен информацией с автоматизированной системой управления технологическим комплексом АСУ ТК. Программное обеспечение ТК содержит ряд функциональных блоков, реализованных на программном уровне:

  • Управление основной насосной установкой.
  • Управление дополнительной насосной установкой, например пожарными насосами.
  • Управление дренажными насосами.
  • Измерение и обработка параметров оборудования НС.
  • Управление отоплением и вентиляцией помещений НС.
  • Осуществление функций охраны от несанкционированного проникновения посторонних лиц на территорию НС.
  • Обслуживание локального терминала.
  • Передача информации о параметрах и режимах работы оборудования НС на АСУ ТК и обработка сигналов управления, получаемых от нее.

Примеры реализации НС с автоматизированным частотно-регулируемым электроприводом

Рассмотренные в статье принципы построения автоматизированных НС с асинхронным частотно-регулируемым электроприводом могут быть применены на НС различного назначения.

Одним из примеров служит НС системы во-дооборота глиноземного производства . Здесь выполнена работа по модернизации электропривода центробежного насоса мощностью 125 кВт. Преобразователем частоты оснащен один из четырех электроприводов.

Другим примером является автоматизация управления электроприводами насосов мощностью 200 кВт на фекальной насосной станции нефтеперерабатывающего завода, которая обслуживает непосредственно предприятие и прилегающий к нему жилой микрорайон. На данном объекте предусмотрено оснащение преобразователем частоты двух из четырех электроприводов насосов .

В обоих случаях управление электроприводами осуществляется по уровню жидкости в приемном резервуаре. Один из алгоритмов автоматического управления асинхронным частотно-регулируемым электроприводом НС по уровню жидкости в приемном резервуаре приведен на рис. 4. Для установок применен комбинированный способ регулирования подачи НС, сочетающий плавное регулирование подачи за счет изменения частоты вращения и дискретное регулирование расхода путем подключения или отключения насосов.

Рис. 4. Алгоритм автоматического управления асинхронным частотно-регулируемым электроприводом НС по уровню жидкости в приемном резервуаре

Модернизация дала следующие результаты:

  • снижено потребление электроэнергии;
  • появилась возможность плавного регулирования частоты вращения насосов в соответствии с требованиями технологического процесса и обеспечения более высокого уровня автоматизации;
  • обеспечен надежный плавный пуск электропривода при токах ниже номинального значения;
  • снижена аварийность питающей сети и механического передаточного оборудования, и, следовательно, увеличен межремонтный период.

Проектирование систем автоматизации водоснабжения и водоотведения

Технология системы водоснабжения разделяет два этапа обработки воды – В технологическом процессе водоснабжения можно выделить два подпроцесса — подъем и подготовку воды, распределение и подачу. Исходя из этого, автоматизация водоснабжения заключается в:

  • Автоматизации управлением насосными станциями подъема и водоочисткой (фильтры, расход, распределение по стоякам и др.);
  • Автоматизация подачи и распределения воды в частях здания.

Целью управления при функционировании АСУ ТП водоснабжения является обеспечение гарантированного и комфортного водоснабжения потребителей с минимальными эксплуатационными затратами.

Профессионально выполненный проект систем автоматизации водоснабжения и канализация позволяет заказчику контролировать выполнение работ на каждом этапе, от монтажа до пуско-наладки и сдачи в эксплуатацию.

ХВС и ГВС являются сложными системами жизнеобеспечения, разработка которых включает в себя гидравлические расчеты, составления аксонометрических схем, выбора расположения и мощности насосного и водонагревательного оборудования, разработка алгоритмов взаимодействия элементов систем и управления ими.

Автоматизацию системы ВиК можно условно декомпозировать на три крупные подсистемы – хозяйственного питьевого водоснабжения, водомерного узла и системы дренажных приямков. Систему канализации

В проекте автоматизации предусматривают оборудование контроля работоспособности основного и резервного насосов, возможности отключения оборудования по сигналу от противопожарных систем, контроль параметров систем, описывают алгоритмы работы для рабочих режимов. Проект разрабатывается с учетом проекта ИТП.

Типовой проект может содержать:

  • Общие данные;
  • Структурные схемы, при необходимости;
  • Задание на программирование системы;
  • Функциональные схемы автоматизации для каждой из подсистем, на основе которых собираются щиты автоматизации;
  • Схемы связи контроллеров системы автоматизации;
  • Схемы внешних соединений для щитов автоматизации;
  • Схемы связи со смежными системами автоматизации;
  • Принципиальные электрические схемы щитов автоматизации, двигателей насосов или вентиляторов;
  • Принципиальные схемы питания щитов автоматизации;
  • План расположения оборудования и проводок систем автоматизации;
  • Кабельные журналы;
  • Монтажные схемы;
  • Спецификации оборудования и проводок.

Техническая поддержка и сервисное обслуживание

Некоторые компании по производству шкафов управления заявляют, что технического обслуживания не требуется. Это действительно так, однако необходима регулярная проверка блока управления эксплуатирующей организацией. Существует периодичность, установленная производителем, и для правильной работы всех устройств ее необходимо придерживаться в обязательном порядке.

Перед осмотром или заменой каких-либо деталей необходимо отключить напряжение и заблокировать оборудование от повторного включения. Самостоятельно можно проверить надежность соединений. Список потенциальных неисправностей, как и возможные способы их устранения, обычно также указывается производителем.

Шкаф управления скважинным или погружным насосом с частотным преобразователем для применения в производственных котельных, коммунальных службах или частных домах, выполненный на заказ по индивидуальному ТЗ

Например, простейшая неисправность – не загорается лампочка, сигнализирующая о подключении системы к электрическому кабелю. Возможны три причины: отсутствует напряжение в сети, сломался автоматический выключатель или перегорела лампа. Соответственно, решением проблемы будет подача напряжения, замена выключателя или лампы.

Если возникла неисправность, которую самостоятельно не устранить, необходимо обратиться к специалистам в сервисный центр.

Нюансы электрической схемы автоматического управления

Релейная катушка присоединяется к фазе сети.

Если данная схема будет работать исключительно с клапаном, то водопроводная магистраль должна быть оборудована датчиком давления, он присоединяется с клапаном последовательно, так можно избежать перегрева устройства и выхода его из строя, когда в емкости будет малый уровень воды.

Замыкая контакт S1, включается насос, который закачивает воду из колодца или скважины в емкость. При достижении уровня воды BV, включается реле К1, оно своими контактами заблокирует нижний уровень НУ. Насос отключится при размыкании контактов К1.1, К1.2.

Рис.№2. Схема управления насосом.
Схема достаточно проста и отличается надежными элементами и безотказностью, но недостаток ее в том, что она может работать исключительно с маломощным оборудованием. Если вы добавите в состав схемы электрический пускатель, увеличится выходная мощность устройства. Кнопка «пуск» и «стоп» даст возможность управлять схемой вручную, не дожидаясь автоматического прекращения работы. Схема простая, но может быть опасна, ведь на электрод подается переменное напряжение 220В.

Возможно, вам также будет интересно

Уличное освещение является одним из основных потребителей электроэнергии, поэтому энергоэффективное управление является одной из важнейших задач в этой области. Свет на улицах должен гореть в нужное время и при любых обстоятельствах, поэтому необходимо обеспечивать безаварийную работу и диспетчеризацию системы освещения. Необходимо знать, сколько ламп перегорело, есть ли электричество на вводе …

По мере миниатюризации чипов растет концентрация вычислительного ресурса в постоянно сокращающемся пространстве. В связи с этим в сфере компьютерных систем были разработаны такие устройства, как планшетный компьютер и смартфон. Изменив потребительский рынок, данные концепции перешли и на рынок индустриального оборудования.

В статье рассматриваются одноплатные компьютеры линейки UP Xtreme , их функционал и возможности, а также прикладные решения, уже реализованные или разрабатываемые на их основе. Статья может быть полезна разработчикам прикладных решений AI EDGE, системным интеграторам и конечным пользователям.

Структура автоматизированной НС

Упрощенная структурная схема автоматизированной НС с частотно-регулируемым электроприводом приведена на рис. 3.

Рис. 3. Структурная схема автоматизированной насосной станции

Электроснабжение НС осуществляется от трансформаторной подстанции ТП. Электроэнергия поступает на распределительное устройство РУ, к которому подключено силовое электрооборудование. Здесь же размещены первичные аппараты для средств учета потребляемой электроэнергии.

Силовое электрооборудование размещено в электрощитовой НС. Оно содержит: силовые шкафы управления СШУ, преобразователь частоты ПЧ и, при необходимости, компенсатор реактивной мощности КРМ. Силовой шкаф управления содержит коммутационный аппарат, с помощью которого осуществляется коммутация питания электропривода М центробежного насоса Н либо к выходу ПЧ, либо к секции РУ.

В машзале НС размещено основное и вспомогательное оборудование НС. Основное оборудование включает насосы ЦН1–ЦН3, электроприводы М1–М3. В состав вспомогательного оборудования входят: дренажные, пожарные, вакуум-насосы; задвижки; вентиляторы; обогреватели и другое оборудование. Управление им производится при помощи исполнительных механизмов ИМ1–ИМn.

Для получения информации о значениях регулируемых параметров служат датчики Д1–Дm.

Сигналы управления и измерительные сигналы от оборудования НС собираются в шкафу управления ШУ. Здесь же происходит их объединение в одну общую информационную линию связи, которая подключается к технологическому контроллеру ТК.

Технологический контроллер реализует общий алгоритм управления НС и обмен информацией с автоматизированной системой управления технологическим комплексом АСУ ТК. Программное обеспечение ТК содержит ряд функциональных блоков, реализованных на программном уровне:

  • Управление основной насосной установкой.
  • Управление дополнительной насосной установкой, например пожарными насосами.
  • Управление дренажными насосами.
  • Измерение и обработка параметров оборудования НС.
  • Управление отоплением и вентиляцией помещений НС.
  • Осуществление функций охраны от несанкционированного проникновения посторонних лиц на территорию НС.
  • Обслуживание локального терминала.
  • Передача информации о параметрах и режимах работы оборудования НС на АСУ ТК и обработка сигналов управления, получаемых от нее.

Примеры реализации НС с автоматизированным частотно-регулируемым электроприводом

Рассмотренные в статье принципы построения автоматизированных НС с асинхронным частотно-регулируемым электроприводом могут быть применены на НС различного назначения.

Одним из примеров служит НС системы во-дооборота глиноземного производства . Здесь выполнена работа по модернизации электропривода центробежного насоса мощностью 125 кВт. Преобразователем частоты оснащен один из четырех электроприводов.

Другим примером является автоматизация управления электроприводами насосов мощностью 200 кВт на фекальной насосной станции нефтеперерабатывающего завода, которая обслуживает непосредственно предприятие и прилегающий к нему жилой микрорайон. На данном объекте предусмотрено оснащение преобразователем частоты двух из четырех электроприводов насосов .

В обоих случаях управление электроприводами осуществляется по уровню жидкости в приемном резервуаре. Один из алгоритмов автоматического управления асинхронным частотно-регулируемым электроприводом НС по уровню жидкости в приемном резервуаре приведен на рис. 4. Для установок применен комбинированный способ регулирования подачи НС, сочетающий плавное регулирование подачи за счет изменения частоты вращения и дискретное регулирование расхода путем подключения или отключения насосов.

Рис. 4. Алгоритм автоматического управления асинхронным частотно-регулируемым электроприводом НС по уровню жидкости в приемном резервуаре

Модернизация дала следующие результаты:

  • снижено потребление электроэнергии;
  • появилась возможность плавного регулирования частоты вращения насосов в соответствии с требованиями технологического процесса и обеспечения более высокого уровня автоматизации;
  • обеспечен надежный плавный пуск электропривода при токах ниже номинального значения;
  • снижена аварийность питающей сети и механического передаточного оборудования, и, следовательно, увеличен межремонтный период.

Комплектация автоматизированной системы водоснабжения

шкаф управления с контроллером

Автоматизация процесса водоснабжения осуществляется с помощью:

  • измерительных преобразователей,
  • датчиков для измерения показателей и, расхода воды,
  • блоков ввода данных и вывода,
  • исполнительных механизмов,
  • контроллера.

Датчики определяют характеристики, регулируют и сигнализируют о неполадках в процессах.

Модули (блоки) ввода и вывода переводят информацию, полученную от датчиков в удобный для обработки формат и поставляющие далее на контроллер.

Измерительные преобразователи преобразуют контролируемые параметры или сигналы в удобную для хранения или обработки форму.

Контроллер управляет технологическими процессами, используя данные датчиков. В отличие от бытовых компьютеров, промышленные контроллеры оснащены мощной системой ввода и вывода сигналов с периферии. Они не требуют постоянного контроля и выдерживают неблагоприятные климатические условия.

Исполнительный механизм получает сигнал от контроллера и преобразует его в движение. Схема исполнительного механизма автоматизации водоснабжения состоит из реле, гидравлического или пневматического привода, двигателя.

Для доставки информации с периферии в пункт управления используются:

  • радиоканалы,
  • коммутатор,
  • мобильная телефония,
  • беспроводной интернет,
  • спутниковая связь.

Автоматика систем водоснабжения обеспечит контроль потока воды доставляемого в жилые постройки и промышленные помещения различного назначения.

Накопительный резервуар решает проблему водоснабжения дома. В него прибывает вода из различных источников: колодец, пробуренная скважина или система водоснабжения города по установленному графику.

Непосредственное наполнение резервуара, происходит за счет насосов отличающихся по величине максимального давления, типу материала, эффективности очищения воды. Современные насосы расположены, на поверхности вблизи источника, перекачка воды, в подобной системе, будет производиться с использованием шланга или трубопровода. Если же, скважина слишком глубока, поверхностный насос заменяют погружным, который часто также называемый глубинным.

Работа автоматизации водоснабжения построена на применении специализированной схемы управления, в состав которой входят сигнализаторы уровня, реле, пускатели и кнопки управления.
Непременный элемент схемы — контрольный датчик, установленный на специальном контрольном электроде

Это важное обязаетельное устройство контролирующее уровень наполнения накопительной емкости с водой. Присоединение в схему осуществляется к пускателю, управляющему насосом или к электромагнитному клапану

Схема автоматизации артезианских источников

Автоматизация процесса водозабора из глубинных скважин и снабжения водой потребителя должна соответствовать условиям:

  • автоматизируется весь процесс от получения воды до доставки людям,
  • обеспечивается постоянный мониторинг добычи воды и количества в емкостях, работы оборудования,
  • все данные архивируются в базах данных контроллера,
  • операторы могут в любой момент изменить параметры насосов из диспетчерской.

Схема автоматизации водоснабжения

  1. В диспетчерском пункте монтируется щиток с контроллером, а также компьютер. Контроллер связывается с компьютером посредством беспроводной связи через Ethernet.
  2. Скважины автоматизированной системы водоснабжения и водоотведения оборудуются блоками ввода и вывода, датчиками для контроля над напряжением и давлением, счетчиками импульсов, механизмом плавного запуска.
  3. Станции водозабора оборудуются блоками ввода и вывода, датчиками тока и давления, счетчиками импульсов. Блок защиты мотора устанавливается на каждый насос.
  4. В баке для воды устанавливают счетчик давления.
  5. Для соединения всех источников забора воды и станций используется кабель типа витая пара.

схема автоматизации скважины

Каждая автоматизированная система водоснабжения и водоотведения оснащается программой управления. В результате насосы работают без присутствия человека, поддерживая нужное количество воды в цистернах. Они обеспечивают заданный напор в водопроводных трубах. Эффективно работает схема, когда один насос ведущий, другие ведомые. Через определенный период ведущий насос меняется, это предотвращает преждевременный износ оборудования. Контроллер автоматизированной системы водоснабжения подсчитывает количество часов, наработанных каждым насосом.

Контроллер анализирует ошибки оборудования: обрывы или замыкания в цепях, отсутствие связи с датчиками, скачки напряжения, аварийные пределы. Если датчик ломается, на пульт управления приходит информация об этом. В автоматическом режиме контроллер разрешает насосу работать, регулируя расход воды и поток.

Автоматизация холодного водоснабжения

Автоматизация систем холодного водоснабжения предназначена для поддерживания постоянного давления в системе, не зависящего от давления на входе и расхода воды. К щитам автоматики подключают такое оборудование как реле давления, контроллеры сухого хода, манометры, пусковые и защитные автоматы насосов, блоки питания, поплавковые выключатели и т.п.

В результате автоматизации, в системах ХВС удается снизить расход воды, повысить ресурс работы оборудования и уменьшить эксплуатационные расходы, снизить затраты на электроэнергию, а также уменьшить возможность возникновения аварийных ситуаций.

Проектирование системы автоматического управления

5.1 Обоснование принятого направления решения задачи

На данном этапе на водопроводных узлах г. Донецка в качестве нагнетающих насосов установлены асинхронные двигатели переменного тока. Исходя из проведенного анализа существующих решений и методов
реализации управления скоростью вращения электродвигателя, решено реализовать метод частотного регулирования.

  1. повышение точности регулирования скорости;
  2. устранение рывков в работе двигателя в рабочем диапазоне частот;
  3. увеличение быстродействия и реакции системы при резких изменениях возмущающих воздействий;
  4. повышение КПД двигателей и, как следствие, снижение энергозатрат.

С целью повышения надежности системы водоснабжения, а также бесперебойной её работы необходимо установить на каждый из нагнетающих давление воды двигателей отдельный частотный преобразователь.
Принцип резервирования позволит добиться безотказной работы всей системы даже в случае выхода из строя одного или нескольких преобразователей, а также в период технического обслуживания двигателей,
резервуаров и другого оборудования на водопроводном узле [].

Для автоматизации удаленных контрольных пунктов было решено заменить механические регуляторы давления воды на управляемые задвижки. Главным преимуществом установки управляемых задвижек станет
возможность изменения уставки давления воды удаленно в любое время суток.

Для реализации такого решения необходимо переоборудование контрольных пунктов. А именно, установка вспомогательных датчиков и исполнительного механизма — электропривода. Также принято решение
использовать на контрольных пунктах понижения давления воды управляющий контроллер для сбора и обработки информации, формирования управляющих сигналов.

Всю информацию о состоянии объекта необходимо периодически передавать на централизованный диспетчерский пункт. С диспетчерского пункта на объект должны передаваться соответствующие уставки давления
воды и уровня воды в резервуарах хранения. Так как водопроводный узел и контрольные пункты понижения давления распределены на большой территории, а сам диспетчерский пункт удален от них, необходимо
также разработать систему беспроводной передачи данных [].

5.2 Функциональная схема технических средств системы автоматического управления

Согласно принятому направлению решения задачи проектирования системы автоматизации водопроводных узлов разработана функциональная схема автоматизации.
Объект автоматизации является распределенным и состоит из главной части — водопроводного узла (рис. 10), удаленных частей —контрольных пунктов понижения давления (рис. 11), а также управляющего диспетчерского пункта.

Рисунок 10 — Функциональная схема автоматизации водопроводного узла

Рисунок 11 — Функциональная схема автоматизации удаленных контрольных пунктов понижения давления

Непосредственно водопроводный узел с точки зрения выбора средств автоматизации необходимо разделить на три составляющих:

  1. автоматизация нагнетающих давление воды двигателей;
  2. автоматизация заполнения резервуаров хранения воды;
  3. автоматизация установления требуемых уровней давления воды в выходных водоводах водопроводного узла.

Для управления асинхронными двигателями (АД1–3) было принято решение использовать бездатчиковые частотные преобразователи (ЧП),
каждый из которых будет задавать скорость вращения соответствующего двигателя. Управляющие сигналы будут подаваться на частотные преобразователи из управляющего
программируемого логического контроллера (ПЛК) с помощью модуля вывода сигналов.

В каждом из резервуаров хранения воды необходимо установить датчик уровня воды. Управляющим сигналом с помощью электропривода будут открываться
или закрываться запирающие краны ввода воды в резервуар.

На каждом из выходных водоводов водопроводного узла необходимо поддерживать соответствующий, зачастую отличный от других, уровень давления воды.
Для этого решено использовать управляемую задвижку. Необходимо установить датчики давления (ДД) воды перед задвижкой и после неё, а также датчик расхода воды (ДР).
Также на электропривод необходимо установить потенциометр обратной связи (ПОС), который позволит контроллеру знать текущее положение задвижки.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий