Устройство и принцип работы однофазного трансформатора

Цена трансформаторов

Цена трансформатора варьируется в широких пределах и зависит от множества факторов. Здесь учитывается тип и назначение, мощность и другие электрические параметры. На стоимости устройств отражается сложность производства и используемые материалы

Немаловажное значение играет защита и другие особенности

Трансформатор известного производителя не может быть дешёвым. Однако покупатель может быть уверен, что приобретённое им устройство полностью соответствует указанным характеристикам, не выйдет из строя при первом включении и гарантированно отработает заложенный ресурс.

Что такое однофазный трансформатор

Электрическая установка, которая содержит две и более катушки, связанные индуктивно, называется трансформатором. Этот прибор способен преобразовывать электроток одной напряженности в переменный ток другой напряженности. На данный момент особой популярностью пользуются трехфазные и однофазные электротрансформаторы.


Схема простейшего однофазного трансформатора

Обычный однофазный прибор представляет собой замкнутый сердечник из ферромагнитного вещества, который обматывают первичной и вторичной катушками. Для снижения токов вихревого типа сердечник делают из тонких (пол-миллиметра) слоев специальной стали.

Обратите внимание! На схемах трансформаторов обычно применяют плюсовые направления всех значений, которые характеризуют процессы работы. Исходит это из того, что первичная катушка — это приемник энергии, а вторичная — источник


Однофазный трансформатор NDK-50VA 230/24 IEC

Что такое однофазный трансформатор

Электроустановка, содержащая две или более индуктивно связанных катушки, называется трансформатором. Это устройство способно преобразовывать электрический ток одной силы в переменный ток разной силы. На данный момент особой популярностью пользуются трехфазные и однофазные электрические трансформаторы.

Схема простейшего однофазного трансформатора

Типичное однофазное устройство представляет собой замкнутый ферромагнитный сердечник, обернутый вокруг первичной и вторичной катушек. Для уменьшения закрученных токов сердечник состоит из тонких слоев (полмиллиметра) специальной стали.

Примечание! На схемах трансформаторов обычно используются положительные направления всех величин, характеризующих рабочие процессы. Это происходит из-за того, что первичная катушка является приемником энергии, а вторичная – источником.

Трансформатор однофазный НДК-50ВА 230/24 МЭК

4.1.ОСНОВНЫЕ ПОНЯТИЯ

Oпределение: Трансформатором называется статический электромагнитный
аппарат, предназначенный для преобразования системы переменного тока
одних параметров в систему переменного тока с другими параметрами.

Известно, что передача электроэнергии на дальние расстояния осуществляется
на высоком напряжении (220, 400, 500 кВ и более), благодаря чему значительно
уменьшаются потери энергии в линии (рис. 4.1.1).
Получить такое высокое напряжение непосредственно в генераторе невозможно,
поэтому в начале линии электропередачи устанавливают повышающие
трансформаторы,
а в конце линии устанавливают понижающие трансформаторы.
Таким образом, переменный ток по пути от электростанции до потребителя
подвергается трех-, а иногда и четырехкратному трансформированию.
В зависимости от назначения трансформаторы разделяются на силовые и
специальные. Силовые трансформаторы используются в линиях электропередачи
и распределения электроэнергии.К специальным трансформаторам относятся: печные, выпрямительные,
сварочные, автотрансформаторы, измерительные, трансформаторы
для преобразования частоты и т.д.
Трансформаторы разделяются на однофазные и многофазные, из которых
наибольшее применение имеют трехфазные.
Кроме того, трансформаторы могут быть двухобмоточными (если они имеют
по две обмотки) или многообмоточными (если они имеют более двух обмоток).
В зависимости от способа охлаждения трансформаторы разделяются на
масляные и сухие.

Как работает однофазный трансформатор

Работа этого устройства заключается в соблюдении законов электромагнетизма. Когда первая обмотка подключена к источнику питания, через нее начинает течь переменный ток, создавая магнитные токи переменного знака в ферромагнитном сердечнике. Когда этот поток замкнут в сердечнике, он блокирует первичную и вторичную катушки и создает в них электродвижущую силу, пропорциональную количеству витков катушки.

Важно! Когда ток проходит через первичную обмотку, он создает с ее помощью магнитное поле, пронизывающее не только эту обмотку, но и вторичную. Принцип действия и рассеяние магнитных волн

Принцип действия и рассеяние магнитных волн

Векторная диаграмма трансформатора

Для упрощения расчётов напряжений и токов в трансформаторе используют векторную диаграмму, которая является графическим изображением всех уравнений трансформатора на комплексной плоскости. Векторную диаграмму строят на основе эквивалентной схемы замещения и уравнений трансформатора.


Эквивалентная схема трансформатора.

Обозначения на схеме: U1, I1, R1, X1 – напряжение, ток, активное и реактивное сопротивление первичной обмотки, U2, I2, X2, R2, ZH – приведённые напряжение, ток, активное, реактивное сопротивление и полное сопротивление нагрузки вторичной обмотки, Е – ЭДС трансформатора, I – намагничивающий ток трансформатора, Ir и Ia – реактивная  и активная составляющая намагничивающего тока.

Построение векторной диаграммы начинается с вектора основного магнитного потока Ф, начальная фаза которого принимается равной нулю, вектор ЭДС Е = Е2 отстаёт от вектора Ф на 90°. Вектор тока намагничивания I опережает вектор магнитного потока на угол α, зависящий от магнитных потерь в сердечнике и содержит две составляющие Ir и Ia.

Для определения направлений векторов I и U2 на вторичной обмотке можно определить из углов φн и φ1

где x2, r2 – приведённое реактивное и активное сопротивление вторичной обмотки,

xН, rН – приведённое реактивное и активное сопротивление нагрузки.


Векторная диаграмма трансформатора.

Данные выражения позволяют построить вектор напряжения на выходе трансформатора U2, на активном сопротивлении обмотки I2r2 и реактивном сопротивлении обмотки I22.

Для продолжения построения необходимо воспользоваться уравнениями трансформатора. Вектор I1 равен геометрической сумме векторов I и –I. Произведём суммирование и изобразим на диаграмме

Вектор (-I) откладывается от конца вектора I параллельным переносом вектора I, но в противоположном направлении. В результате вектор I1 откладывается от начала координат и до конца вектора (-I).

Вектор напряжения на первичной обмотке

Вектор (–Е) строится от начала координат в направлении противоположном вектору Е, то есть он опережает вектор Ф на 90°, вектор I1x1 откладывается от конца вектора (–Е) перпендикулярно вектору тока I1, а вектор I1r1 – параллельно.

Построенная векторная диаграмма имеет общий характер, но её можно перестроить в зависимости от режимов работы трансформатора и позволяет определить электрические параметры трансформатора в этих режимах.

Однофазный трансформатор. Принципы работы. Основные параметры

Устройство, состоящее из двух или нескольких индуктивно связанных катушек, называется трансформатором.

Трансформатор – это электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения. Наибольшее распространение получили однофазные и трехфазные трансформаторы.

Принцип действия трансформатора основан на явлении взаимной индукции. Простейший однофазный трансформатор состоит из двух катушек, расположенных на ферромагнитном сердечнике. (рис. 3.3.1)

рис. 3.3.1

Обмотка, к которой подключен источник энергии, называется первичной, а обмотка, к которой подключается нагрузка, называется вторичной.

При подключении первичной катушки к источнику переменного тока по ней потечет ток I1, который создает магнитный поток ф. Часть этого потока пересекает витки вторичной катушки, индуцируя в ней ЭДС взаимной индукции. Так как вторичная катушка замкнута на нагрузку, то по вторичной цепи потечет ток I2.

Таким образом, энергия от источника за счет магнитной связи между катушками передается в нагрузку.

Основными параметрами трансформатора являются: коэффициент трансформации, коэффициент полезного действия и мощность потерь.

Коэффициентом трансформации называется отношение количества витков первичной обмотки к количеству витков вторичной обмотки.

Если , то трансформатор называется понижающим (U1 U2), а если n 1 – то повышающим.

U2 – напряжение на первичной обмотке;

U2 – напряжение на вторичной обмотке;

W1 – число витков первичной катушки;

W2 – число витков вторичной катушки

Коэффициент полезного действия (КПД) называется отношение полезной мощности, выделяемой в нагрузке, к затраченной мощности, потребляемой от источника, выраженное в процентах.

Р1 – полезная мощность, выделяемая в нагрузке;

Р2 – затраченная мощность, потребляемая от источника;

Рсм = Рчистер + Рвихр.токи

Рм1 – мощность тепловых потерь в первичной катушке;

Рм2 – мощность потерь во вторичной катушке;

Рсм – мощность потерь в сердечнике, обусловленная потерями на гистерезис и вихревые токи.

Общие потери – это разность мощностей источника и потребителя энергии.

в понижающем трансформаторе

в повышающем трансформаторе

При расчете трансформаторов и аппаратуры с их использованием применяют схему замещения приведенного «трансформатора», в которой элементы электрической схемы учитывают физические процессы, происходящие в реальном трансформаторе.

Вопросы для самопроверки

1. Что называется трансформатором?

2. На чем основан принцип действия трансформатора?

3. Приведите схему однофазного трансформатора?

4. Что называется коэффициентом трансформации?

5. Какой трансформатор называется понижающим, а какой – повышающим?

6. Как определяется КПД трансформатора?

7. Из чего складываются потери трансформатора?

Тема №2: Электрические машины

Устройство и принцип действия машин постоянного тока.

Машина постоянного тока состоит из двух основных частей: подвижной и неподвижной. Неподвижная часть — индуктор представляет собой электромагнит, имеющий одну или несколько пар полюсов. Он состоит из станины, полюсов и обмоток возбуждения, расположенных на полюсах. Под действием постоянного тока, протекающего по обмоткам возбуждения, полюса намагничиваются. Таким образом, создается магнитный поток машины.

Вращающаяся часть машины – якорь состоит из вала, сердечника и обмотки якоря, соединенной с коллектором. Якорная обмотка через коллекторные пластины и прилегающие к ним контактные щетки соединяется с внешней электрической цепью.

Когда якорь генератора вращается каким-либо двигателем, в обмотке якоря, пересекающей магнитный поток полюсов, индуктируется э.д.с. Начальный ток возбуждения в параллельной обмотке возникает под действием небольшой э.д.с., которая индуктируется за счет остаточного магнитного потока, после чего происходит «самовоз­буждение» генератора.

Виды трансформаторов и их применение


Виды трансформаторов

По конструктивным особенностям сердечника известные образцы однофазных трансформаторов подразделяются на стержневые, кольцевые и броневые изделия. По форме используемого в них магнитопровода они могут быть:

  • Ш-образными;
  • Тороидальными;
  • П-образными.

Каждая из этих форм подходит для определенных целей, связанных с необходимостью получения заданных передаточных характеристик.

По величине максимально достижимой магнитной связи (МС) трансформаторы делятся на изделия с сильным, средним и слабым взаимодействием. Эти характеристики в значительной мере зависят от конструкции самого изделия и вида его сердечника.

4.6.ЭКВИВАЛЕНТНАЯ СХЕМА ТРАНСФОРМАТОРА

Одним из методических приемов, облегчающих исследование электромагнитных
процессов и расчет трансформаторов, является замена реального трансформатора
с магнитными связями между обмотками эквивалентной электрической схемой
(рис. 4.6.1).

На этом рисунке представлена эквивалентная схема приведенного трансформатора,
на которой сопротивления г и х условно вынесены из соответствующих обмоток и включены
с ними последовательно. Т.к. k = 1, то E1 = E2. Поэтому точки А и а, а также Х и х
на приведенном трансформаторе имеют одинаковые потенциалы, что позволит
электрически соединить эти точки, получив Т-образную эквивалентную схему замещения (рис. 4.6.2).

Произведя математическое описание этой схемы методами Кирхгофа, можно
сделать вывод о том, что она полностью соответствует уравнениям ЭДС
и токов реального трансформатора (см. раздел 4.5). Отсюда появляется
возможность электрического моделирования трансформатора на ЭВМ. Проводя
исследования относительно нагрузки z2‘ (единственного переменного параметра
схемы), можно прогнозировать реальные ха-рактеристики трансформатора,
начиная от холостого хода (z2‘= ) и кончая коротким замыканием (z2
= 0).

Эксплуатация

При использовании однофазных трансформаторов технике безопасности отводится особое место. Обусловлено это тем, что устройство находится под высоким напряжением, находящимся на первичных обмотках

При подключении и установке трансформатора в электрические схемы важно соблюдать ряд правил, для исключения поломок и нарушений работы прибора:

  • Чтобы обмотки не выходили из строя (выгорали), необходимо поставить защиту от короткого замыкания на вторичной цепи;
  • Необходимо контролировать температурный режим сердечника и обмоток. Желательно установить систему охлаждения, предусматривающую исключение критического повышения температуры при работе.

В случае различной нагрузки от электросети изменяется и её напряжение. Для стабильной работы устройств, получающих энергию, необходимо, чтобы напряжение не изменялось от установленного уровня выше допустимого диапазона. Ввиду этого допускается использование методов регулирования напряжения в сети.

Как рассчитать коэффициент трансформации

Коэффициентом трансформации «k» называется отношение напряжения U1 на концах первичной обмотки трансформатора к напряжению U2 на выводах его вторичной обмотки, определенному на холостом ходу (когда вторичных обмоток несколько, то коэффициентов k – тоже несколько, они определяются в этом случае по очереди). Это отношение принимается равным соотношению количеств витков в соответствующих обмотках.

Величина коэффициента трансформации легко вычисляется путем деления показателей ЭДС обмоток исследуемого трансформатора: ЭДС первичной обмотки – на ЭДС вторичной.

Коэффициент трансформации имеет очень важное значение как величина, при помощи которой вторичная обмотка приводится к первичной. В эксплуатационных условиях имеет большое значение коэффициент трансформации напряжения, под которым понимают отношение номинальных напряжений трансформатора. Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга

Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга.

В идеале потери мощности (на токи Фуко и на нагрев проводников обмоток) в трансформаторе полностью отсутствуют, поэтому и коэффициент трансформации для идеальных условий рассчитывается простым делением напряжений на выводах обмоток. Но ничего идеального в мире нет, поэтому иногда необходимо прибегать к замерам.

В реальности мы всегда имеем дело с повышающим или с понижающим трансформатором. У трансформаторов напряжения повышающих коэффициент трансформации всегда меньше единицы (и больше нуля), у понижающих — больше единицы. То есть коэффициент трансформации свидетельствует о том, во сколько раз ток вторичной обмотки под нагрузкой отличается от тока первичной обмотки, или во сколько крат напряжение вторичной обмотки меньше подаваемого на первичную обмотку.

Например, понижающий трансформатор ТП-112-1 имеет по паспорту коэффициент трансформации 7,9/220 = 0,036, значит номинальному току (по паспорту) вторичной обмотки в 1,2 ампера соответствует ток первичной обмотки 43 мА.

Зная коэффициент трансформации, измерив его например двумя вольтметрами на холостом ходу, можно убедиться в правильности соотношения количеств витков в обмотках. Если зажимов несколько, то измерения проводят на каждом ответвлении. Измерения такого рода помогают обнаруживать поврежденные обмотки, определять их полярности.

Есть несколько путей определения коэффициента трансформации:

путь непосредственного измерения напряжений вольтметрами;

методом моста переменного тока (например портативным прибором типа «коэффициент» для анализа параметров трехфазных и однофазных трансформаторов);

по паспорту данного трансформатора.

Для нахождения реального коэффициента трансформации традиционно применяют два вольтметра . Номинальный коэффициент трансформации рассчитывают путем деления значений напряжений, измеренных на холостом ходу (они и указаны в паспорте на трансформатор).

Если проверяется трехфазный трансформатор, то измерения следует провести для двух пар обмоток с наименьшим током КЗ. Когда трансформатор имеет выводы, часть которых скрыта под кожухом, то значение коэффициента трансформации определяется только для тех концов, которые доступны снаружи для присоединения приборов.

Если трансформатор однофазный, то рабочий коэффициент трансформации легко рассчитать, разделив напряжение приложенное к первичной обмотке, на в этот же момент измеренное вольтметром напряжение на вторичной обмотке (с подключенной нагрузкой ко вторичной цепи).

Применительно к трехфазным трансформаторам, данная операция может быть выполнена различными путями. Первый путь — подача на высоковольтную обмотку трехфазного напряжения от трехфазной сети, или второй путь – подача однофазного напряжения только на одну высоковольтную обмотку из трех, без выведения или с выведением нулевой точки. В каждом варианте измеряют линейные напряжения на одноименных зажимах первичных и вторичных обмоток.

В каждом случае нельзя подавать на обмотки напряжение существенно превосходящее номинальное значение, указанное в паспорте, ведь тогда погрешность измерения окажется высокой из-за потерь даже на холостом ходу.

4.3. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ. УРАВНЕНИЕ ЭДС

Как видно из рис. 4.2.1, основной магнитный поток Ф, действующий в
магнито-проводе трансформатора, сцепляется с витками обмоток и наводит
в них ЭДС:

Предположим, что магнитный поток Ф является синусоидальной функцией, т.е.

Подставим это значение в выражения для ЭДС и, произведя дифференцирование,
получим:

где

Из последних формул видно, что ЭДС е1 и е2 отстают по фазе от
потока Ф на угол p /2.

Максимальное значение ЭДС:

Переходя к действующим значениям, имеем

Если Фmах выражено в максвеллах, а Е в вольтах, то

Отношение ЭДС обмотки высшего напряжения к ЭДС обмотки низшего напряжения
называется коэффициентом трансформации.

Подставив вместо ЭДС Е1 и Е2 их значения, получим:

Токи I1 и I2, протекающие по обмоткам трансформатора, помимо основного
потока Ф создают магнитные потоки рассеяния ФР1 и ФР2 (рис. 4.2.1).
Каждый из этих потоков сцепляется только с витками собственной обмотки
и индуктирует в них реактивные ЭДС рассеяния ЕР1 и ЕР2. Величины этих
ЭДС прямо пропорциональны возбуждающим их токам:

где x1 и x2 – индуктивные сопротивления рассеяния обмоток.
Кроме этого, в каждой обмотке трансформатора имеет место активное падение
напряжения, которое компенсируется своей ЭДС:

Рассмотрим действие изученных выше ЭДС в обмотках трансформатора.
В первичной обмотке Е1 представляет собой ЭДС самоиндукции, а поэтому
она направлена против первичного напряжения u1. В связи с этим уравнение
ЭДС для первичной обмотки имеет вид:

Величины j I1 x1 и I1 r1 представляют собой падение напряжений в первичной
обмотке трансформатора. Обычно j I1 x1 и I1 r1 невелики, а поэтому,
с некоторым приближением, можно считать, что подведенное к трансформатору
напряжение u1 уравновешивается ЭДС Е1:

Во вторичной обмотке Е2 выполняет роль источника тока, поэтому
уравнение ЭДС для вторичной обмотки имеет вид:

где j I2 x2 и I2 r2 – падение напряжения во вторичной обмотке.
При холостом ходе трансформатора первичная обмотка включена на напряжение
u1, а вторичная разомкнута (I2 = 0).
При этих условиях в трансформаторе действует только одна намагничивающая
сила первичной обмотки I10 w1, созданная током I10, которая наводит
в магнитопроводе трансформатора основной магнитный поток:

где Rм – магнитное сопротивление магнитопровода потоку.
При подключении к вторичной обмотке нагрузки ZН в ней возникает ток
I2. При этом ток в первичной обмотке увеличивается до значения I1.
Теперь поток Ф создается действием двух намагничивающих сил I1 w1 и
I2 w2.

Из выражения

видно, что основной поток Ф0 не зависит от нагрузки трансформатора,
при неизменом напряжении u1. Этот вывод дает право приравнять:

Общие сведения о трансформаторах


Трансформатор ТМГ-2500/6/0.4

В качестве преобразователей эти устройства традиционно применяются для приведения к приемлемому виду мощностей, пересылаемых по высоковольтным линиям. Для «переброски» на огромные расстояния подходят только сверхвысокие напряжения, при которых ток может иметь приемлемую величину.

Если попытаться передать энергию хотя бы на сотню километров в виде привычного напряжения 380 Вольт – для доставки до потребителя нужной мощности потребуется ток величиной в миллионы Ампер.

Для ее рассеяния нужен провод толщиной примерно с человеческое тело, что на практике реализовать невозможно. Поэтому на генерирующей электричество стороне с помощью другого (повышающего) трансформатора его значение поднимается до 110-ти кВ. В таком виде использовать электроэнергию распределения по жилым строениям и производственным объектам нельзя. Поэтому после доставки по ВВ в распределительных станциях 110 кВ понижаются до 10(6) кВ.

Отсюда они поступают в районные трансформаторные подстанции, где в местном понижающем трансформаторе приобретают свой окончательный вид 380 (220) Вольт. При таких значениях потенциалов энергию легко удается транспортировать по подземному кабелю или воздушному проводу СИП до конечного потребителя. Поэтому однофазный трансформатор играет большую роль в жизни человека.

Как проверять электронные трансформаторы?

На самом деле, чтобы разобраться с причиной поломки не нужно обладать огромным багажом знаний, достаточно иметь под рукой мультиметр (стандартный китайский, как на рисунке №2) и знать, какие цифры должен выдавать на выходе каждый из компонентов (конденсатор, диод и т.д.).

Рис 2: Мультиметр.

Мультиметр может измерить постоянное, переменное напряжение, сопротивление. Также он может работать в режиме прозвонки. Желательно, чтобы щуп мультиметра был обмотан скотчем, (как на рисунке №2), это убережёт его от обрывов.

Чтобы правильно производить прозвонку различных элементов трансформера рекомендую всё-таки выпаивать их (многие пытаются обойтись без этого) и исследовать отдельно, поскольку в противном случае показания могут быть неточными.

Диоды

Нельзя забывать, что диоды прозваниваются только в одну сторону. Для этого мультиметр устанавливается в режим прозвонки, красный щуп прикладывается к плюсу, чёрный к минусу. Если всё в норме, то прибор издаёт характерный звук. При наложении щупов на противоположные полюса не должно происходит вообще ничего, а если это не так, то можно диагностировать пробой диода.

Транзисторы

При проверке транзисторов, их также нужно выпаивать и прозванивать переходы база-эмиттер, база-коллектор, выявляя их проходимость в одну, и в другую сторону. Обычно, роль коллектора в транзисторе выполняет задняя железная часть.

Обмотка

Нельзя забывать проверять обмотку, как первичную, так и вторичную. Если возникают проблемы с определением того, где первичная обмотка, а где вторичная, то помните, что первичная обмотка даёт большее сопротивление.

Конденсаторы (радиаторы)

Ёмкость конденсатора измеряется в фарадах (пикофарадах, микрофарадах). Для его исследования тоже используется мультиметр, на котором выставляется сопротивление в 2000 кОм. Положительный щуп прикладывается к минусу конденсатора, отрицательный к плюсу. На экране должны появляться всё возрастающие цифры вплоть до почти двух тысяч, которые сменяются единицей, что расшифровывается как бесконечное сопротивление. Это может свидетельствовать об исправности конденсатора, но лишь в отношении его способности накапливать заряд.

Ещё один момент: если в процессе прозвонки возникла путаница с тем, где расположен «вход», а где «выход» трансформатора, то нужно просто перевернуть плату и на обратной стороне на одном конце платы вы увидите небольшую маркировку «SEC» (второй), которой обозначается выход, а на другом «PRI» (первый) — вход.

Основные параметры

Кроме того, следует отметить, что любой Т обладает некоторыми параметрами, которые и отличаются от других трансформаторов. К тому же, если понимать эти зависимости, то можно рассчитать и изготовить Т своими руками.

Связь между ЭДС, возникающей в обмотках Т, зависит от количества витков каждой из них. Исходя из того, что I и II обмотки пронизываются одним и тем же Ф, возможно вычислить следующее соотношение на основании общего закона индукции для мгновенных значений ЭДС:

  1. Для первичной с количеством витков w1: e1 = – w1 * dФ/dt * E-8.

  2. Для вторичной с количеством витков w2: e2 = – w2 * dФ/dt * E-8.

Соотношение dФ/dt показывает величину изменения Ф за единицу времени. Значение потока Ф зависит от закона изменения переменного тока за единицу времени. Исходя из этих выражений получается следующая формула соотношения числа витков к ЭДС каждой обмотки:

e1/e2 = w1/w2.

Следовательно, можно сделать следующий вывод: индуцируемые в обмотках значения ЭДС также относятся к друг другу, как и число витков обмоток. Для более простой записи можно сопоставить значения e и U: e = U. Из этого следует, что e1 = U1 e2 = U2 и возможно получить еще одну величину, называемую коэффициентом трансформации (к): e1/e2 = U1/U2 = w1 / w2 = k. По коэффициенту трансформации Т делятся на понижающие и повышающие.

Понижающим является Т, k которого меньше 1, и, соответственно, если к > 1, то он является повышающим. При отсутствии потерь в проводах обмоток и рассеивания Ф (они незначительны и ими можно пренебречь) вычислить основной параметр Т (k) достаточно просто. Для этого необходимо воспользоваться следующим простым алгоритмом нахождения k: найти соотношения U обмоток (если обмоток более 2, то соотношение нужно искать для всех обмоток).

Чтобы определить значения U, необходимо использовать 2 вольтметра, точность которых составляет около 0,2−0,5. Кроме того, для определения k существуют такие способы:

  1. По паспорту.
  2. Практически.
  3. Использование определенного моста (мост Шеринга).
  4. Прибором, предназначенным для этой цели (УИКТ).

Таким образом, принцип работы однофазного трансформатора основан на простом законе физики, а именно: если проводник с n количеством витков поместить в магнитное поле, причем это поле должно постоянно меняться с течением времени, то в витках будет генерироваться ЭДС. В этом случае справедливо и обратное утверждение: если в постоянное магнитное поле поместить проводник и осуществлять им движения, то в его обмотках начинает появляться ЭДС.

Измерительные трансформаторы

В этом классе работают два вида устройств, обеспечивающих в целях измерения параметров сети преобразования:

Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики периодически подвергают поверке на правильность измерения как величин, так и углов отклонения векторов тока и напряжения.

Трансформаторы тока

Главная особенность их устройства заключается в том, что они постоянно эксплуатируются в режиме короткого замыкания. У них вторичная обмотка полностью закорочена на маленькое сопротивление, а остальная конструкция приспособлена для такой работы.

Чтобы исключить аварийный режим входная мощность ограничивается специальным устройством первичной обмотки: в ней создается всего один виток, который не может создать при протекании по нему тока большого падения напряжения на обмотке и, соответственно, передать в магнитопровод высокую мощность.

Этот виток врезается непосредственно в силовую цепь, обеспечивая его последовательное подключение. У отдельных конструкций просто создается сквозное отверстие в сердечнике, через которое пропускают провод с первичным током.

Нагрузку вторичных цепей трансформатора тока, находящегося под напряжением, нельзя разрывать. Все провода и соединительные клеммы по этой причине изготавливаются с повышенной механической прочностью. В противном случае на разорванных концах сразу возникает высоковольтное напряжение, способное повредить вторичные цепи.

Благодаря работе трансформаторов тока создается возможность обеспечения постоянного контроля и анализа нагрузок, протекающих в электрической системе. Особенно это актуально на высоковольтном оборудовании.

   Измерительные трансформаторы тока 110 кВ

Номинальные значения вторичных токов измерительных трансформаторов энергетики принимают в 5 ампер для оборудования до 110 кВ включительно и 1 А — выше.

Широкое применение трансформаторы тока нашли в измерительных приборах. За счет использования конструкции раздвижного магнитопровода удается быстро выполнять различные замеры без разрыва электрической цепи, что необходимо делать при использовании обычных амперметров.

Токовые клещи с раздвижным магнитопроводом трансформатора тока позволяют обхватить любой проводник с напряжением и замерить величину и угол вектора тока.

Трансформаторы напряжения

Отличительная особенность этих конструкций заключается в том, что они работают в режиме, близком к состоянию холостого хода, когда величина их выходной нагрузки невысокая. Они подключается к той системе напряжений, величина которой будет измеряться.

   Измерительный трансформатор напряжения 110 кВ

Измерительные трансформаторы напряжения обеспечивают гальваническую развязку оборудования первичных и вторичных цепей, работают в каждой фазе высоковольтного оборудования.

Из них создают целые комплексы систем измерения, позволяющие фильтровать и выделять различные составляющие векторов напряжения, учет которых необходим для точной работы защит, блокировок, систем сигнализации.

За счет работы трансформаторов тока и напряжения снимают вектора вторичных величин, пропорциональные первичным в реальном масштабе времени. Это позволяет не только создавать цепи измерения и защит по току и напряжению, но и за счет математических преобразований векторов анализировать состояние мощностей и сопротивлений в действующей электрической системе.

Как устроен и как работает трансформатор

Трансформаторы – это название огромного «семейства», куда входят однофазные, трехфазные, понижающие, повышающие, измерительные и множество других типов трансформаторов. Основное их назначение – преобразование одного или нескольких напряжений переменного тока в другое на основе электромагнитной индукции при неизменной частоте.

Итак, кратко, как работает простейший однофазный трансформатор. Он состоит из трех основных элементов – первичной и вторичной обмоток и объединяющего их в единое целое магнитопровода, на который они как бы нанизаны. Источник подключается исключительно к первичной обмотке, в то время, как вторичная снимает и передает уже измененное напряжение потребителю.

Принцип работы трансформатора

Подключенная к сети первичная обмотка создает в магнитопроводе переменное электромагнитное поле и формирует магнитный поток, который начинает циркулировать между обмотками, индуцируя в них электродвижущую силу (ЭДС). Ее величина зависит от числа витков в обмотках. К примеру, для понижения напряжения необходимо, чтобы в первичной обмотке витков было больше, чем во вторичной. Именно по такому принципу работают понижающие и повышающие трансформаторы.

Важная особенность конструкции трансформатора состоит в том, что магнитопровод имеет стальную структуру, а обмотки, как правило имеющие форму цилиндра, изолированы от него, непосредственно не связаны друг с другом и имеют свою маркировку.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий