Какими способами может осуществляться осветление воды

Метод отстаивания

Метод заключается в удалении взвешенных и коллоидных частиц под действием силы тяжести. Скорость осаждения зависит от их формы, размеров, плотности, шероховатости и от температуры жидкости. Оптимальные значения для этого процесса – 8-12°С.

Одним из условий эффективной очистки является скорость движения воды в отстойнике, которая напрямую влияет на выпадение частиц в осадок. Она должна быть в пределах 0,12-0,6 мм/с, в зависимости от конструкции сооружения.

Применяются отстойники: горизонтальные, вертикальные и радиальные. Каждый из них предназначен для определённых значений объёма и количества загрязнений.

Способ отстаивания является самым простым, эффективность составляет 60-70%. Основной минус – большой объём сооружений.

Осветление – вода

Осветление воды, называемое предварительной очисткой ( предочисткой), осуществляют в основном осаждением, в результате которого из воды выделяются примеси в виде осадка. К осаждению относят процессы коагуляции и известкования, проводимые, как правило, в осветлителе. Из обрабатываемой воды выделяется основная масса осадка, состоящего из хлопьевидных образований с включенными в них коллоидными и грубодисперсными примесями. Окончательную очистку воды от осадка производят фильтрованием, оборудование для которого также осносится к предочистке.

Осветление воды в поле центробежных сил при вращении воды в аппарате основано на переносе частиц взвеси к периферии центробежной силой, равной разности значений центробежной силы для твердой и жидкой фаз.

Осветление воды достигается механическими способами очистки, путем отстаивания и фильтрования.

Схема сверхскоростного фи льтра конструкции Г. Н. Никифорова. 5 – поддон. 2 – рас. пределительное устройство. 3-вращающийся патрубок. 6, 5 – отвод и подача промывной воды через поддон 5. 4 – центральный стояк. 7 – щели подачи исходной воды. I, 9 – подача исходной и отвод фильтрованной воды. 8 – отверстия для сбора фильтрата.

Осветление воды на высокопроизводительных самопромывающихся фильтрах ВСФ-2000 непрерывного действия широко используют в системах производственного водоснабжения.

Схема промышленной водоподготовки.

Осветление воды достигается отстаиванием ее с последующим фильтрованием через зернистый материал различной дисперсности. Для коагуляции коллоидных примесей и абсорбции окрашенных веществ, содержащихся в воде, к ней добавляют электролиты – сульфаты алюминия и железа.

Осветление воды в пидроциклоне происходит под действием силы, равной разности центробежных сил, которые действуют на воду и частицы взвеси, имеющие большую плотность, чем вода.

Классификация примесей воды по их фазово-дисперсному состоянию и процессы, используемые для их удаления.

Осветление воды, а также частичное обесцвечивание ее без применения реагентов осуществляется в открытых, специально построенных бассейнах или водохранилищах. В этих условиях длительное и относительно спокойное состояние воды в водоеме способствует осаждению взвесей и окислению екоторых примесей. Если для неполного осветления необходимо отстаивание воды в течение 1 – 2 суток, то для частичного обесцвечивания это время возрастает до 1 – 2 месяцев; последнее ограничивает использование безреагент-ного осветления и тем более обесцвечивания воды.

Осветление воды производится путем отстоя в отстойных бассейнах, отстойниках, а также в суспензионных осветлителях.

Осветление воды после введения в нее реагентов проводят в осветлителях со взвешенным осадком и затем на фильтрах или в вихревых реакторах с последующей фильтрацией.

Осветление воды с помощью коагуляции преимущественно осуществляется в отстойниках. При этом вода, проходя через конусное днище, активно взаимодействует с хлопьями, скоп ив-щимися в нижней части в результате осаждения. Большое влияние на коагуляцию имеют величина рН воды, температура и солевой состав. Поэтому для каждого конкретного случая предварительно в лабораторных условиях определяют тип коагулянта, необходимую его дозу, величину рН, позволяющие получить наиболее благоприятные условия для протекания процесса.

Осветление воды производи-путем отстоя в отстойных бассейна отстойниках, а также в суспензионн осветлителях.

Осветление воды достигают путем отстаивания и фильтрации. При простом механическом отстаивании очищаемая вода проходит через специальные бассейны-отстойники с малой скоростью. Время осаждения взвешенных частиц зависит от их размеров. Коллоидные частицы могут находиться во взвешенном состоянии долгое время.

Химические методы обеззараживания воды

К химическому способу относят обеззараживание дезсредством с веществами для уничтожения вирусов, микробов, спор, грибков. Нередко бактерицидное действие препаратов дополняют обработкой ультрафиолетом или иным безреагентным методом.

После обеззараживания надо удалять остатки патогенов, токсины от их жизнедеятельности, химические соединения. Повторно применяют фильтрующие материалы для тонкой очистки воды.

Они могут задерживать частицы 1–5 микрон, включая химикаты и бактерии холеры, кишечной палочки. Чтобы остановить также возбудителей брюшного тифа, пользуются фильтрами супертонкой очистки.

Хлорирование

Дешевый и эффективный метод. Хлором обеззараживают питьевую воду в очагах эпидемии или чрезвычайной ситуации, водопроводе, отстойниках, других местах.

Хлорсодержащие средства токсичны, вызывают коррозию железных поверхностей

Важно соблюдать дозировку вещества. По нормам СанПиНа остаточное количество реагента через 30 минут не должно превышать 0,5 мг/л

Определение изначальной дозы хлора для обеззараживания воды подбирают экспериментально.

Дезсредства по обеззараживанию воды для питья, хознужд или в бассейнах:

  • гипохлорит натрия,
  • диоксид хлора,
  • растворы хлорной извести,
  • гипохлорит кальция.

Метод подходит для очистки воды в бассейне своими руками. В домашних надувных и каркасных емкостях обеззараживают зеленкой в пропорции 200 мл на 500 л. Для аквапарков покупают «Хлориклар», другие хлорсодержащие растворы, таблетки, гранулы для бассейна для дезинфекции воды.

Иодирование и бромирование

Для обеззараживания используют йод либо бром. У них высокая противомикробная активность. Не рекомендовано для дезинфекции питьевой воды: вещества противопоказаны при болезнях щитовидной железы и ряда других патологий.

Озонирование

Один из современных методов дезинфекции. Обеззараживание делают оборудованием, образующим озон. Газ разлагается с выделением кислорода и разрушает клетки микробов, вирусов, грибков.

Бактерицидный эффект наступает при остаточной дозе озона 0,5 мг/1 дм3. При большей концентрации газа вода начинает неприятно пахнуть.

Озонирование активно против вирусов, бактерий, паразитов, грибков. Не образует канцерогенов, вредных соединений. Подходит для коттеджа, централизованного и индивидуального водоснабжения. Есть бытовые установки для жилья с простым монтажом.

Олигодинамия

Название метода произошло от комбинации слов dynamis + oligos (сила в малых дозах). Олигодинамическое действие заключено в токсическом влиянии на патогены ионами серебра, свинца, меди, золота, других металлов.

Олигодинамия выполняется ионаторами воды. Обеззараживание уничтожает:

  • водоросли,
  • споры,
  • плесень и другие грибки,
  • сложные вирусы,
  • опасные бактерии,
  • паразитов,
  • другие инфекции.

Обеззараживание питьевой воды ионами металла редко применяют из-за опасности их накопления и отравления. Нельзя использовать большие дозы, а малые — не уничтожают патогены.

Полимерные реагенты

Второй современный способ обеззараживания. По противомикробной активности превышает действие озонирования, УФ-лучей или УЗ-волн, безопаснее хлорирования.

Часто используемые полимерные реагенты:

  • «Неотабс»,
  • «Аквадез»,
  • «Биопаг»,
  • другие средства с полигексаметиленгуанидина гидрохлоридом.

Обеззараживание полимерными реагентами не портит вкус, цвет или запах воды для питья, в бассейне. Способ редко используют для очистки в водопроводе.

Схемы очистки воды из скважины

Очистка воды от железа

Она предусматривает последовательное прохождение четырех этапов:

  • Поступление воды в специальный фильтр, внутренняя среда которого позволяет проходить жидкости 2-3 степени очистки;
  • Прохождение первичной стадии очистки, на которой растворенное железо приобретает нерастворимую форму;
  • Фильтрация воды через подложку из гравия и вывод чистой жидкости из системы;
  • Смыв в канализацию железистого осадка, который остался в фильтре.
  1. Аэрация и окислительный катализ. В этом случае применяют специальную компрессорную систему, оснащенную аэрационной колонной. В ней происходит насыщение железистой воды кислородом и ее окисление. Катализатором химической реакции служит сорбент из гранулированного активированного угля. После окисления железо переходит в нерастворимую форму, выпадает в осадок и удаляется.
  2. Многокомпонентный обмен с помощью ионной смолы. Такая фильтрация проходит в одну стадию. Ионная смола выступает в качестве сорбента, который смягчает воду, понижает ее окисляемость, уменьшает цветность, удаляет загрязнения, замещая железо жидкости ионами натрия.
  3. Фильтрация диоксидом марганца. Этот реагент окисляет железо, задерживает его, а потом удаляет при обратном осмосе. Диоксид марганца можно использовать при очистке воды аэрацией, хлорированием или озонированием. Он позволяет удалять вредные примеси даже с низкой концентрацией.
  4. Самостоятельная очистка реагентами. Это наиболее распространенный метод, который может использовать любой домашний мастер. В основе метода заложен принцип окисления и задержание частиц железа в фильтре для очистки воды из скважины. В качестве реагентов применяют хлор, марганцовокислый калий или гипохлорит кальция. Все они восстанавливаются с помощью недорогой соли в таблетках.
  5. Очистка электрическим полем. В ее основе заложены окислительные свойства магнитных крупиц меди и цинка. При взаимодействии с железом воды они остаются в корпусе фильтра, в то время как электрохимические процессы противодействуют окислению жидкости.

Очистка воды от песка

Промывку скважины от песка можно осуществить тремя основными методами:

  • В первую очередь следует прокачать воду. При включенном насосе нужно добиться ее большого оттока. Если оборудование скважины исправно, вместе с водой весь песок, который попал в трубу, будет удален. После этого возобновится подача чистой воды без примесей.
  • Если первый способ не оказывает нужного эффекта, можно выполнить промывку пробуренной скважины. Для этого в нее потребуется опустить колонну, состоящую из труб, и подать в эту систему воду под напором. В результате этой процедуры песок, который скопился внизу, вместе с водой поднимется вверх, проникая в пространство между трубами, и выплеснется из скважины.
  • Альтернативой промывке может служить продувка системы. Для ее осуществления в скважину нужно вставить трубу и подать в нее воздух. Давление должно составлять 10-15 атм. Все загрязнения со дна поднимутся при этом по полости между трубами на поверхность, и скважина очистится.

В крайнем случае, если все перечисленные методы для условий участка не подходят, загрязненную воду можно оставить для отстаивания. После выпадения песочного осадка чистую жидкость нужно аккуратно перелить.

Очистка воды от извести

  1. Отстаивание. Для этого большую емкость нужно наполнить водой и ждать осаживания частиц. Спустя некоторое время чистую воду сверху надо аккуратно слить, а потом удалить осадок.
  2. Фильтрация. Она позволяет удалить нерастворимые частицы извести. В процессе очистки можно использовать различные модели фильтров, вид каждого из которых обеспечивает соответствующее качество воды на выходе.
  3. Кипячение. Оно используется при потребности в небольшом количестве чистой воды. Соли кальция в кипятке приобретают нерастворимую форму. Недостаток метода — образование накипи и определенная сложность ее удаления из емкости после кипячения воды.
  4. Обратный осмос. Этот метод предусматривает применение специального фильтра с мембраной, которая задерживает все посторонние вещества, кроме молекул воды. Перекрестное течение в фильтре промывает его и предохраняет этим от засорения. Такая система очистки воды из скважины от извести наиболее эффективна по сравнению с предыдущими тремя способами.
  5. Химический способ. Он позволяет при помощи различных реагентов, связывающих соли, удалять из артезианской воды коллоидные растворы. После протекания реакций образуются нерастворимые частицы, которые можно уловить с помощью обычных фильтров и удалить. Такой способ предназначен для очистки значительных объемов воды.

Популярные производители установок и систем ультрафиолетового обеззараживание питьевой воды

Чтобы купить качественную станцию для УФ обработки, следует рассмотреть продукцию профильных производителей. Широкий ассортимент серийных установок поможет выбрать оборудование с учетом личных требований и предпочтений.

НПО ЛИТ

Эта компания выпускает системы ультрафиолетового обеззараживания воды промышленного и бытового назначения. Научно-конструкторское подразделение НПО ЛИТ разрабатывает уникальные модели с 1991 г. Начиная с 1995 г. предприятие освоило выпуск специализированных ламп амальгамнгого типа. Из реализованных проектов можно отметить создание очистных сооружений в г. Тольятти с производительностью до 300000 м куб./сутки, крупнейшего комплекса водоподготовки в Санкт-Петербурге (1,5 млн м куб/сутки). Оборудование этого бренда применяют в Китае, Венгрии, Южной Корее и других странах.

В базовой серии представлены установки с производительностью от 0,9 до 20 м куб./час (потребление электричества – от 24 до 230 Вт). Минимальная скорость обработки рекомендована для воды из открытых источников, соответствующей действующим нормативам СанПиН по загрязненности. В этой ситуации для эффективного уничтожения микроорганизмов применяют излучение с плотностью энергии не менее 40 мДж на см кв.

В серии Advanced представлены установки обеззараживания воды ультрафиолетовым излучением с производительностью 1,4-70 м куб./час (мощностью 52-540 Вт). Пульт управления оснащен цифровым индикатором основных рабочих параметров. Возможно дистанционное включение (отключение) питания.

Sterilight (Viqua)

Специализированные системы УФ-обеззараживания выпускают под брендом Sterilight с 1986 г. Компания производитель стала частью группы Viqua в 2008 году. Под этими торговыми марками на международном рынке представлен широкий ассортимент оборудования с хорошими потребительскими характеристиками.

При соблюдении официальных рекомендаций техника обеспечивает номинальную дозу облучения в течение всего срока службы. Новые модели отличаются высокой эффективностью при сравнительно небольших размерах.

Для обработки питьевой воды можно применить систему Viqua VT4/2 со следующими параметрами:

· производительность – 0,8 м куб./час;

· напоминание о замене лампы – автоматизированное;

· доза облучения в рабочей зоне – не менее 16 мДж на см кв.;

· длина волны светильника – 253,7 нм.

Производитель рекомендует выполнять предварительную подготовку, чтобы удалить из воды вредные примеси. Допустимые контрольные показатели:

· жесткость – 2,5 мг-экв/л;

· сероводород – 0,05 мг/л;

· железо – 0,3 мг/л;

· марганец – 0,05 мг/л.

AquaPro

Для примера можно рассмотреть параметры системы UV-36GPM:

· производительность – до 8 м куб./час;

· количество ламп в блоке – 3 шт.;

· соединение – 1 ½ дюйма;

· рабочий температурный диапазон – от +2°C до +40° C ;

· сигнализация отключения – световая и звуковая;

· материал корпуса – нержавеющая сталь;

· размеры – 98х23х28 мм;

· мощность потребления – 40 Вт.

При установке производитель советует оставить свободное место для удобной замены излучателей не менее 1 м. Чтобы ремонт и выполнение рабочих операций не прервали водоснабжение, оборудование монтируют с обходной линией (байпасом). Следует использовать защитное заземление корпуса. Максимальное давление в магистрали – 8 атм.

Относительная влажность в помещении не должна превышать 80%. Лампа защищена кварцевым чехлом. Однако при нарушении этого норматива может быть поврежден выносной блок питания. Очистку от солевых отложений надо выполнять не реже 1 раза через 2-3 месяца эксплуатации.

Химические методы обеззараживания питьевой воды

Химические способы основаны на добавлении в воду различных реагентов-окислителей, которые убивают вредоносные бактерии. Наибольшую популярность среди таких веществ получили хлор, озон, гипохлорит натрия, диоксид хлора.

Для достижения высокого качества важно правильно рассчитать дозу реагента. Малое количество вещества может не возыметь эффекта, а даже наоборот способствовать увеличению числа бактерий. Реагент необходимо вводить с избытком, это позволит уничтожить как имеющиеся микроорганизмы, так и бактерии, попавшие в воду после обеззараживания

Реагент необходимо вводить с избытком, это позволит уничтожить как имеющиеся микроорганизмы, так и бактерии, попавшие в воду после обеззараживания.

Избыток нужно рассчитывать очень аккуратно, чтобы он не мог нанести вред людям. Наиболее популярные химические методы:

  • хлорирование;
  • озонирование;
  • олигодинамия;
  • полимерные реагенты;
  • иодирование;
  • бромирование.

Фильтрование через слой загрузки


Вода проходит через зернистый материал, задерживающий коллоидные загрязнения. В качестве слоя загрузки применяют кварцевый песок, гравий, дроблённый антрацит и другие. Они должны обладать надлежащим гранулометрическим составом и необходимой механической прочностью, так как происходит их периодическое истирание.

По скорости движения и времени очистки различают скорые и медленные фильтры. Медленные подходят для очистки некоагулированной воды, содержащей относительно мелкую примесь. Так как данный метод – безреагентный, то максимальные значения исходной мутности должны быть до 50 мг/л, цветности до 50 градусов. Скорость движения в таком фильтре составляет 0,1-0,3 м/ч.

Скорые фильтры используют для осветления мутных и цветных вод. В технологической схеме очистки скорые фильтры предусматривают после сооружений коагуляции и отстаивания, так как невозможно получить необходимый эффект одной ступенью

Важно проводить периодическую обратную промывку загрузки для предотвращения последующего загрязнения. Скорость движения в скором фильтре составляет 5,5-15 м/ч

Замораживание

Есть много разных способов очистки воды

Очистить водопроводную воду в домашних условиях можно с помощью ее частичного замораживания. Суть этого метода очищения заключается в следующем: более чистая и пресная замерзает быстрее, затем кристаллизуется вода, содержащая примеси и соли.  Для очистки данным способом необходимо воду налить в емкость, например, в пластиковую бутылку, и поставить в морозильную камеру. Когда на поверхности образуется первый тонкий слой льда, его следует удалить, так как это замерзла быстрозамерзающая тяжелая вода.

После того, как вода замерзнет примерно на половину, емкость достать из морозильной камеры. Именно замерзшую воду следует использовать для питья и приготовления пищи. Незамерзшую воду использовать не стоит. В зимнее время очищать воду гораздо проще. В морозную погоду емкости с водой можно ставить на открытый воздух.

Кстати, еще с древних времен известно, что талая вода обладает рядом целебных свойств. Таким образом, очищение путем замораживания позволяет получить не только чистую, но и целебную воду.

Способы очистки, обеззараживания и улучшения качества питьевой воды

Предпочтительные методы повышения качества выбирают в зависимости от содержащихся в воде микроорганизмов, уровня загрязненности, источника водоснабжения и других факторов. Обеззараживание направлено на удаление болезнетворных бактерий, которые разрушающе влияют на организм человека.

Очищенная вода прозрачна, не имеет посторонних привкусов и запахов, а также абсолютно безопасна. На практике для борьбы с вредными микроорганизмами применяют способы двух групп, а также их комбинацию:

  • химические;
  • физические;
  • комбинированные.

Для того, чтобы выбрать эффективные методы дезинфекции необходимо провести анализ жидкости. Среди проводимых анализов выделяют:

  • химический;
  • бактериологический;

Применение химического анализа позволяет определить содержание в воде различных химических элементов: нитратов, сульфатов, хлоридов, фторидов и т.д. Все же показатели, анализируемые данным методом, можно подразделить на 4 группы:

  1. Органолептические показатели. Химический анализ воды позволяет определить ее вкус, запах и цвет.
  2. Интегральные показатели – плотность, кислотность и жесткость воды.
  3. Неорганические – различные металлы, содержащиеся в воде.
  4. Органические показатели – содержание в воде веществ, которые могут изменяться под воздействием окислителей.

Бактериологический анализ направлен на выявление различных микроорганизмов: бактерий, вирусов, грибков. Подобный анализ выявляет источник заражения и помогает определить методы обеззараживания.

Зачем очищать воду

От качества воды зависит здоровье человека

Основной недостаток воды из-под крана — чрезмерная жесткость, то есть избыток солей кальция и магния, гидрокарбонатов, сульфатов и железа. Высокая жесткость придает воде горьковатый привкус, оказывает негативное влияние на органы пищеварения, нарушает водно-солевой баланс в организме человека, образует известковый налет на посуде и нагревательных элементах бытовой техники, портит ткани при стирке.

В водопроводной воде могут присутствовать различные примеси: азотные соединения, соли натрия, калия, кальция, марганца и т.д. Спорную пользу приносит хлорирование. С одной стороны, хлорирование — это эффективный, доступный и недорогой способ обеззараживания.

С другой стороны, хлор существенно ухудшает вкусовые качества, тому же хлор, вступив в реакцию с органическими соединениями, может образовывать хлорсодержащие токсины, мутагенные и канцерогенные вещества и яды, в том числе диоксиды. Естественно, качество водопроводной воды контролируется соответствующими органами и при превышении концентрации вредных примесей в ней принимаются соответствующие меры. Однако большинство специалистов едины во мнении: пить воду непосредственно из крана нельзя. Нужно ее хотя бы вскипятить.

Кипячение

Кипячение считается самым простым и доступным способом очистки бытовой воды. Более того, если воду не очищать посредством фильтров, кипячение является обязательным условием ее безвредного для здоровья потребления.  Кипячение помогает очистить воду от многих видов примесей. Под воздействием высокой температуры большая часть бактерий погибает, разрушаются хлорсодержащие соединения, вода становится мягкой и вкусной. Однако кипячение имеет и свои минусы.

  1. Во-первых, в хлорированной воде под воздействием высокой температуры образуется диоксид, имеющий тенденцию к накоплению в организме человека и оказывающий канцерогенное действие.
  2. Во-вторых, обычное кипячение (не длительное) уничтожает далеко не всех микробов, не говоря уже о тяжелых металлах, нитратах, феноле и нефтепродуктах.
  3. В-третьих, при длительном воздействии высоких температур происходит разрушении структуры и она, в лучшем случае, становится не полезной, а в худшем случае, вредной для здоровья. Кипяченая вода – тяжелая или, как ее еще называют, «мертвая» вода. В ней содержатся тяжелые изотопы водорода – атомы дейтерия. Отрицательное воздействие такой воды на организм человека подтверждено многочисленными исследованиями.

Чтобы очищение при помощи кипячения было максимально эффективным, а негативные эффекты были минимальными важно соблюдать следующие правила:

  • Повторно воду не кипятить, выливая из чайника остатки и промывая его после каждого использования
  • Желательно кипятить предварительно отфильтрованную воду или хотя бы отстоянную Использовать для питья или приготовления пищи только верхние 2/3 объема, оставшуюся воду выливать
  • По мере необходимости очищать чайник и прочую посуду от накипи
  • Избегать длительного кипячения

Результаты и обсуждение

В ходе испытаний установлено, что на эффективность процесса высокоскоростного осветления в большей степени влияет доза флокулянта. На рис. 7 показана зависимость параметров мутности, перманганатной окисляемости и остаточного алюминия от дозы флокулянта. Наиболее эффективными являлись режимы с использованием флокулянта дозой 0,2–0,25 мг/л.

Мутность, цветность, перманганатная окисляемость. Снижение мутности происходило достаточно эффективно.

На рис. 8 приведены характеристики исходной воды, отстоянной воды на сооружениях Восточной станции водоподготовки, осветленной воды, полученной на пилотной установке, и фильтрата после колоночного стенда по мутности, цветности, перманганатной окисляемости, содержанию остаточного алюминия. Дозы реагентов, применявшихся в ходе испытаний, представлены в табл. 1. Приведенные данные свидетельствуют о возможности подбора режима коагулирования, позволяющего обеспечить эффективное снижение мутности отстоянной воды.

остаточного алюминия в отстоянной воде снижалось до 0,1 мг/л, что на порядок ниже по сравнению с водой, обработанной на Восточной станции водоподготовки.

Оценка эффективности процесса при различных нагрузках (20–40 м3/ч) показала, что изменение расхода воды, поступающей на пилотную установку высокоскоростного осветления, не приводит к изменению качества отстоянной воды.

Результаты бактериологического анализа показали, что качество отстоянной воды было достаточно высоким. Фильтрованная вода после песчаных фильтров без применения окислителей полностью соответствовала требованиям СанПиН (однако в этот период качество речной воды характеризовалось низкой бактериальной загрязненностью). Обобщенные результаты бактериологического анализа за период испытаний представлены в табл. 2.

Технико-экономическая оценка технологии высокоскоростного осветления. В табл. 3 представлена предварительная технико-экономическая оценка технологии высокоскоростного осветления в сравнении с традиционной схемой очистки на Восточной станции водоподготовки (за период испытаний). Оценка проведена в части затрат на реагенты. Всесторонняя технико-экономическая оценка возможна в случае проведения полномасштабных испытаний в течение полного годового цикла.

По предварительным расчетам, затраты на реагенты с учетом потерь микропеска сопоставимы. Учитывая повышение степени очистки на установке высокоскоростного осветления, прогнозируется снижение затрат на собственные нужды за счет увеличения продолжительности фильтроцикла при последующей очистке воды на скорых фильтрах. Таким образом, существует возможность получения экономического эффекта от внедрения технологии высокоскоростного осветления.

Поскольку при проведении испытаний на установке не применялось предварительное окисление, в данной технологии с использованием микропеска реализован высокоэффективный процесс осветления воды. Изучение этого процесса представляет интерес с точки зрения уменьшения площади станций водоподготовки: по предварительным оценкам, площадь, необходимая для размещения отстойника высокоскоростного осветления, в 5 раз меньше площади классического полочного отстойника и примерно в 20 раз меньше площади традиционной системы осветления.

Качество воды, получаемой на установке высокоскоростного осветления, зависит от дозы флокулянта (без него данная технология не работает). Средняя доза флокулянта Praestol 650TR для волжской воды в исследуемый период составляла 0,2–0,25 мг/л. В разработанной технологии могут использоваться реагенты, применяющиеся на московских станциях водоподготовки. При оптимальном подборе реагентов и увеличении дозы флокулянта мутность отстоянной воды снижалась до 0,6–0,8 мг/л. Одновременно обеспечивается значительное уменьшение концентрации остаточного алюминия.

3.4 Обеззараживание ультразвуком

В некоторых случаях для обеззараживания воды используется ультразвук. Впервые этот метод был предложен в 1928 г. Механизм действия ультразвука до конца неясен. По этому поводу высказываются следующие предположения:

– ультразвук вызывает образование пустот в сильно завихренном пространстве, что ведет к разрыву клеточной стенки бактерии;

– ультразвук вызывает выделение растворенного в жидкости газа, а пузырьки газа, находящиеся в бактериальной клетке, вызывают ее разрыв.

Преимуществом использования ультразвука перед многими другими средствамиобеззараживания сточных водслужит его нечувствительность к таким факторам, как высокая мутность и цветность воды, характер и количество микроорганизмов, а также наличие в воде растворенных веществ.

Единственный фактор, который влияет на эффективностьобеззараживания сточных вод ультразвуком — это интенсивность ультразвуковых колебаний. Ультразвук — это звуковые колебание, частота которых находится значительно выше уровня слышимости. Частота ультразвука от 20000 до 1000000 Гц, следствием чего и является его способность губительным образом сказываться на состоянии микроорганизмов. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Обеззараживание и очистка водыультразвуком считается одним из новейших методов дезинфекции. Ультразвуковое воздействие на потенциально опасные микроорганизмы не часто применяется в фильтрахобеззараживания питьевой воды, однако его высокая эффективность позволяет говорить о перспективности этого метода обеззараживания воды, не смотря на его дороговизну.

Очищение бассейна от ржавчины

Причиной появления ржавчины в бассейне является окислившееся железо, которое постепенно превращается в желеобразную консистенцию. Если резервуар заполняется водой из водопровода, то ржавые трубы и металлические элементы напрямую воздействуют на его чистоту. Необходимо заменить металл на пластик и произвести тщательную очистку поверхностей. 

Механический способ

Это наиболее простой метод, который подходит в случаях образования донного осадка. Для этого подойдет принцип работы вакуумной помпы. Можно применять обычный шланг, опуская один конец в воду, а другим создавая тягу для извлечения мусора. Также удобно использовать покупной или самостоятельно изготовленный подводный пылесос. С помощью такого аппарата очищают дно и стенки резервуара. 

Химические средства

Если ржавчина растворена в толще воды, то ее не удастся быстро собрать с помощью физического воздействия. В этом случае нужно использовать специальные химические вещества, которые вызывают выпадение осадка в бассейне. После этого можно применять сачки и подводные пылесосы для сбора мусора с дна чаши. При этом нужно проявлять аккуратность, поскольку передозировка средств может быть опасна химическим загрязнением. 

Электрофизические методы

Такой способ осуществляется с помощью озонаторов, ультрафиолетовых ламп и специальных ионизаторов. Последние выделяют медь и серебро во время работы. Это наиболее безопасный способ, поскольку он исключает воздействие химии, а выделившийся озон естественным образом превращается в обычный кислород. Таким образом можно эффективно удалить из бассейна значительные загрязнения любого типа без нежелательных последствий для организма. 

Выводы

Качество фильтрованной воды после высокоскоростного осветления без применения окислителей соответствует требованиям СанПиН по микробиологическим показателям. Изменение расхода исходной воды (нагрузки) в диапазоне 20–40 м3/ч, поступающей на пилотную установку, не приводит к изменению качества отстоянной воды. Следует отметить, что испытания проводились в течение небольшого отрезка времени. Поэтому для полномасштабной оценки данной технологии необходимо проведение экспериментов в различные сезоны года. Испытания в течение полного годового цикла позволят более четко оценить затраты на реализацию данной технологии и сравнить их с затратами на действующих сооружениях. Окончательные выводы о применимости представленной технологии для московских станций водоподготовки также могут быть сделаны при проведении полномасштабных испытаний.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий