Как выбрать и установить источник питания для светодиодной ленты

Выбор блока питания по электрическим характеристикам

Расчет блока питания для любой светодиодной ленты надо начинать с напряжения. Оно должно соответствовать напряжению питания ленты. Если напряжение источника будет выше, светильник быстро выйдет из строя. Если ниже – будет светиться в полнакала.

Второй важный параметр – наибольшая мощность. Она рассчитывается по следующей формуле:

Pист=Руд*Lленты*Кзап, где:

  • Рист – минимальная мощность блока питания;
  • Руд – удельная потребляемая мощность (мощность, которую потребляет 1 метр полотна);
  • Lленты – общая длина отрезков полотна;
  • Кзап – коэффициент запаса, может быть равен от 1,2 до 1,4.

Некоторые величины должны быть рассмотрены подробнее.

Как определить потребляемую мощность одного метра ленты

Проще всего определить потребляемую мощность метра полотна по технической спецификации. Там этот параметр указан в явном виде. Если ее нет, но известен тип ленты, в различных источниках можно найти эту характеристику.

Светодиоды 5050 и 3028 различаются размером.

Если и это невозможно, то во многих случаях удельное потребление можно определить с помощью линейки. Для этого надо измерить размеры светодиода и определить его форм-фактор. По этой характеристике можно найти потребляемую мощность одного светодиода, посчитать их количество на метре и перемножить.

Светодиод -15730-2
Размеры, мм3,5х2,85х55,6х34,8х34,8х3
Потребляемая мощность, Вт0,060,20,50,51
Потребляемый ток, А0,020,060,150,150,3

Проблема только в том, что некоторые LED выпускаются в разных вариантах – с одним кристаллом или с 2-3. В этом случае и мощность будет отличаться в 2-3 раза. И единственный способ найти искомый параметр – взять наименьший отрезок ленты и запитать его от источника заведомо большей мощности. Замерив ток в амперах и умножив его на напряжение питания (12 В или другое), можно получить удельную мощность отрезка (Вт). Посчитав количество отрезков в метре, можно выйти на искомую величину.

Схема измерения тока.

Если амперметра нет, можно перед подключением к источнику питания замерить сопротивление резистора, установленного на отрезке (или считать, если маркировка доступна). После подачи питания замерить напряжение на нем и найти ток по известному соотношению: I=U/R, где I – искомый ток в амперах, U – напряжение питания в вольтах, R – сопротивление резистора.

Резистор в 300 Ом на LED-ленте.

Зачем нужен коэффициент запаса и что он учитывает

При выборе мощности БП без коэффициента запаса он будет работать на пределе своих возможностей. Этот режим имеет свои недостатки:

  1. «Китайский ватт» может быть меньше обычного ватта. Если говорить серьезно, это означает, что фактическая наибольшая мощность недорогих блоков питания из Юго-Восточной Азии зачастую меньше задекларированной.
  2. Часть электронных компонентов на максимальном токе (и максимальном нагреве) имеет сокращенный срок службы. Это особенно касается намоточных деталей (трансформаторов, дросселей), которые в недорогих блоках питания делаются вручную кустарным способом из тонкого провода с некачественной изоляцией.
  3. Если в источнике питания есть некачественно пропаянные контакты (это вполне обычный случай), то на максимальном токе они будут нагреваться и качество соединения будет ухудшаться. Это вызовет еще больший нагрев, и так по кругу до выхода из строя.
  4. При небольшом повышении температуры в помещении электронный блок выходит на предельный режим и его срок службы непредсказуемо сокращается.
  5. Потребляемая осветительной системой мощность зависит от схемы (хоть и не критически). Конфигурация осветителя может содержать: диммер (диммеры), RGB-контроллер, драйвер (или несколько), усилитель (возможно, не один), прочие приборы.

Подключение LED-ленты через блок управления.

Все эти устройства потребляют токи на холостой ход и на собственные нужды (питание внутренней схемы и т.д.), их КПД не равен 100%. По сравнению с токами, потребляемыми LED-светильниками, они невелики. Но если БП работает в режиме «на грани», эта небольшая добавка может стать критической.

Исходя из этих соображений, по реальной ситуации к рассчитанной мощности надо добавить когда 20, а когда и 40 процентов.

Особенности установки блока питания

Блоки питания для светодиодных лент обычно устанавливаются в соответствии со структурной схемой, которая входит в их комплектацию. В основном перед установкой трансформатора светодиодную ленту разрезают на секции, состоящие из необходимого количества диодов.

Места нарезки обозначены двумя парами контактных групп (с каждого конца секции) и маркером в виде ножниц. Блок питания соединяется параллельно секциям. В процессе подключения необходимо соблюдать полярность (подключать клеммы блока питания с обозначениями «+» и «-» к соответствующим контактам ленты), при этом следует учитывать, что выходное напряжение источника не должно превышать 12 или 24 В (номинальное напряжение ленты). Расположение блока питания не влияет на функциональность устройства, но его нужно подбирать по эстетическим соображениям.

На практике применяются две схемы подключения светодиодной ленты к блоку питания.

Подключение светодиодной ленты к одному блоку питания

Чаще всего светодиодная лента представляет собой цельный пятиметровый отрезок, который намотан на пластиковую катушку. Как правило, с внешней стороны — на незамотанный на катушке конец — к ленте подсоединяются провода, необходимые для соединения с блоком питания. Если же после покупки обнаружилось отсутствие соединительных проводов, то следует взять любые многожильные провода красного («+») и чёрного («-») цвета, отмерить нужную длину, которой должно быть достаточно, чтобы достать до клемм блока питания, и припаять их, предварительно зачистив и облудив оба конца.

  1. Облуживаем провода, используя канифоль и олово, и методом пайки подсоединяем их к дорожкам ленты. В процессе пайки следует применять маломощный паяльник и производить соединение достаточно быстро, так как есть вероятность того, что от воздействия повышенной температуры светодиоды могут повредиться.

    Облуживать провода нужно быстро, чтобы не перегреть их и не повредить светодиоды

  2. После этого свободные концы проводов (не припаянные к ленте) подсоединяем к блоку питания, соблюдая полярность.

    Красный провод от светодиодной ленты («+») нужно подсоединить к клемме «+V», а чёрный («-») — к клемме «-V»; к клеммам «L» и «N» подключается сетевое напряжение («L» — фаза, «N» — ноль)

Видео: подключение герметичного блока питания

Подключение двух светодиодных лент к одному блоку питания

В качестве примера рассмотрим следующий вариант: запланирован монтаж и подключение светодиодной ленты, длина которой составляет 8 метров. Проблема в том, что найти кусок ленты такой длины довольно затруднительно, т. к. в основном светодиодные ленты продаются в катушках по 5 метров. Однако всё же требуется 8 метров, и что же делать?

Если нужно подключить несколько кусков свтодиодной ленты общей длиной более 5 метров, это можно сделать только по параллельной схеме

Все достаточно просто. Выполняем следующие действия:

  1. Приобретаем две катушки со светодиодной лентой, причём один кусок оставляем цельным (5 метров), а от второго отрезаем 3 метра и соединяем их. Для того чтобы отрезать ленту берём обычные ножницы и ищем линию, по которой будем отрезать кусок нужной длины.
  2. Далее зачищаем и облуживаем контактные площадки обоих кусков ленты (с одной и той же стороны).
  3. Берём четыре двухжильных провода (два красных «+» и два чёрных «-») и также подготавливаем (зачищаем и лудим).
  4. Припаиваем к двум кускам ленты. Свободные концы проводов, идущие от пятиметрового куска, припаиваем (привинчиваем) к клеммам блока питания («+V» и «-V»), а к клемам «L» и «N» подсоединяем провода сетевого кабеля.
  5. Далее на проводах, которые подведены к пятиметровому куску ленты, снимаем небольшие куски изоляции. Затем лудим их и подпаиваем к ним провода от трёхметрового куска, тем самым подключая оба куска ленты параллельно.

    Если соответствующие провода от каждой ленты свести в одну точку, получится параллельное подключение

Как устроен диммер

Принцип работы основан на изменении напряжения путем воздействия резистора на участок цепи питания с подключенными светодиодами.

В прошлом были реостатные диммеры. В цепь включался дополнительный проводник одинакового сечения с ползунком — реостат. Перемещением ползунка увеличивается длина проводника. Синхронно с ним растет сопротивление току, понижающее напряжения. Реостатным диммером обеспечивается точная регулировка яркости светодиодной ленты, но имеет ряд минусов:

  • снижение яркости не уменьшает потребляемую мощность;
  • потери тока преобразуются в тепло, создавая риски перегрева.

Схема ввода сопротивления в цепь ползунковым реостатом

Реостатные светорегуляторы использовались в прошлом там, где необходимо было снижать напряжение — освещение в театрах, громкость радиоприемников и др.

С появлением полупроводников используются тиристорные диммеры. К цепи подключается управляемый диод с затвором — тиристор. У него есть анод, катод и управляющий электрод (затвор). Последний формирует периодичные сигналы, по которым тиристор пропускает ток. В результате до устройства доходит часть импульсов переменного тока.

Тиристор

Управляя сигналом и периодичностью открытия затвора можно влиять на синусоиду переменного тока и поступающее напряжение.

У тиристоров стабильный анод и катод, поэтому он пропускает ток только в одном направлении. Проблема решается включением в цепь двух параллельно-встречных диодов, но схема усложняется.

Поэтому в современных диммерах используются симисторы. У них тоже 3 контактных электрода с затвором. Но отличаются от тиристоров четырьмя p-n переходами. Каждый контакт может быть и катодом и анодом, пропуская ток в обоих направлениях. Принцип регулировки напряжения у симисторов тот же, что и у тиристоров.

Симистор

Виды и принцип работы импульсных источников питания

Основной принцип работы импульсного источника питания (ИИП) состоит в том, что постоянное напряжение (выпрямленное сетевое или от стороннего источника) преобразовывается в импульсное частотой до сотен килогерц. За счет этого намоточные детали (трансформаторы, дроссели) получаются легкими и компактными.

Принципиально ИИП делятся на две категории:

  • с импульсным трансформатором;
  • с накопительной индуктивностью (она также может иметь вторичные обмотки)

По другим признакам ИИП можно разделить на нестабилизированные и стабилизированные, однополярные и двухполярные и т.п. Эти особенности не носят столь принципиального характера.

Выбор блока питания по электрическим характеристикам

Расчет блока питания для любой светодиодной ленты надо начинать с напряжения. Оно должно соответствовать напряжению питания ленты. Если напряжение источника будет выше, светильник быстро выйдет из строя. Если ниже – будет светиться в полнакала.

Второй важный параметр – наибольшая мощность. Она рассчитывается по следующей формуле:

Pист=Руд*Lленты*Кзап, где:

  • Рист – минимальная мощность блока питания;
  • Руд – удельная потребляемая мощность (мощность, которую потребляет 1 метр полотна);
  • Lленты – общая длина отрезков полотна;
  • Кзап – коэффициент запаса, может быть равен от 1,2 до 1,4.

Некоторые величины должны быть рассмотрены подробнее.

Как определить потребляемую мощность одного метра ленты

Проще всего определить потребляемую мощность метра полотна по технической спецификации. Там этот параметр указан в явном виде. Если ее нет, но известен тип ленты, в различных источниках можно найти эту характеристику.

Светодиоды 5050 и 3028 различаются размером.

Если и это невозможно, то во многих случаях удельное потребление можно определить с помощью линейки. Для этого надо измерить размеры светодиода и определить его форм-фактор. По этой характеристике можно найти потребляемую мощность одного светодиода, посчитать их количество на метре и перемножить.

Светодиод -15730-2
Размеры, мм3,5х2,85х55,6х34,8х34,8х3
Потребляемая мощность, Вт0,060,20,50,51
Потребляемый ток, А0,020,060,150,150,3

Проблема только в том, что некоторые LED выпускаются в разных вариантах – с одним кристаллом или с 2-3. В этом случае и мощность будет отличаться в 2-3 раза. И единственный способ найти искомый параметр – взять наименьший отрезок ленты и запитать его от источника заведомо большей мощности. Замерив ток в амперах и умножив его на напряжение питания (12 В или другое), можно получить удельную мощность отрезка (Вт). Посчитав количество отрезков в метре, можно выйти на искомую величину.

Схема измерения тока.

Если амперметра нет, можно перед подключением к источнику питания замерить сопротивление резистора, установленного на отрезке (или считать, если маркировка доступна). После подачи питания замерить напряжение на нем и найти ток по известному соотношению: I=U/R, где I – искомый ток в амперах, U – напряжение питания в вольтах, R – сопротивление резистора.

Резистор в 300 Ом на LED-ленте.

Зачем нужен коэффициент запаса и что он учитывает

При выборе мощности БП без коэффициента запаса он будет работать на пределе своих возможностей. Этот режим имеет свои недостатки:

  1. «Китайский ватт» может быть меньше обычного ватта. Если говорить серьезно, это означает, что фактическая наибольшая мощность недорогих блоков питания из Юго-Восточной Азии зачастую меньше задекларированной.
  2. Часть электронных компонентов на максимальном токе (и максимальном нагреве) имеет сокращенный срок службы. Это особенно касается намоточных деталей (трансформаторов, дросселей), которые в недорогих блоках питания делаются вручную кустарным способом из тонкого провода с некачественной изоляцией.
  3. Если в источнике питания есть некачественно пропаянные контакты (это вполне обычный случай), то на максимальном токе они будут нагреваться и качество соединения будет ухудшаться. Это вызовет еще больший нагрев, и так по кругу до выхода из строя.
  4. При небольшом повышении температуры в помещении электронный блок выходит на предельный режим и его срок службы непредсказуемо сокращается.
  5. Потребляемая осветительной системой мощность зависит от схемы (хоть и не критически). Конфигурация осветителя может содержать: диммер (диммеры), RGB-контроллер, драйвер (или несколько), усилитель (возможно, не один), прочие приборы.

Подключение LED-ленты через блок управления.

Все эти устройства потребляют токи на холостой ход и на собственные нужды (питание внутренней схемы и т.д.), их КПД не равен 100%. По сравнению с токами, потребляемыми LED-светильниками, они невелики. Но если БП работает в режиме «на грани», эта небольшая добавка может стать критической.

Исходя из этих соображений, по реальной ситуации к рассчитанной мощности надо добавить когда 20, а когда и 40 процентов.

Фильтр

Выходное напряжение надо отфильтровать – оно содержит большое количество продуктов преобразования. Так как инвертор работает на достаточно большой частоте, то эффективными становятся фильтры, содержащие не только конденсаторы, но и малогабаритные дроссели относительно небольшой индуктивности.


Г- и П-образные LC-фильтры.

Для расчета элементов фильтра надо задаться коэффициентом пульсаций Кп. Он выбирается из предполагаемой нагрузки:

  • чувствительная аппаратура для радиоприема, предварительные каскады аудиоаппаратуры, микрофонные усилители – Кп=10-5..10-4;
  • усилители звуковой частоты – Кп=10-4..10-3;
  • приемная и звуковоспроизводящая аппаратура среднего и низкого класса – Кп=10-2..10-3.

Для Г-образного фильтра, устанавливаемого после двухполупериодного выпрямителя, действуют соотношения:

  • L*C=25000/(f2+Кп);
  • L/C=1000/R2н.

В этих формулах:

  • L – индуктивность дросселя в мкГн;
  • С – емкость конденсатора в мкФ;
  • f – частота преобразования в Гц;
  • Rн – сопротивление нагрузки в Омах.

Для П-образного фильтра:

  • С1=С2=С;
  • L/C=1176/R2н.

Размерность величин та же, что и для предыдущего фильтра.

Полугерметичные блоки

Если же вас не устраивает ни один из вышеприведенных вариантов и переплачивать вы не намерены, то обратите внимание на третий вид блоков. Это полугерметичные модели

По английски они называются Rainproof, хотя полноценной защиты от дождя и не обеспечивают.

Поэтому ставить их непосредственно на улице под открытым небом нельзя. Здесь индекс влагозащиты равен IP54.

Где же их можно монтировать? Они идеально подойдут для следующих помещений:

большие склады

чердаки

садовые беседки

подсобные и неотапливаемые помещения

крыши

У этих полугерметичных блоков есть защитный корпус и крышка, которая легко открывается, предоставляя доступ ко всем внутренностям. По бокам расположены вентиляционные отверстия.

Но в отличие от простых насверленных “дырок” в негерметичных экземплярах, эти отверстия имеют защиту от капель в виде выпуклого ската.

Главная конструктивная особенность таких БП – наличие встроенного внутреннего вентилятора.

К примеру в негерметичных блоках, вентилятор ставится в мощные экземпляры, начиная от 300Вт.

В этих же моделях, встроенное охлаждение идет уже в девайсах мощностью всего 60Вт.

Недостаток отверстий для охлаждения приходится компенсировать принудительным обдувом. Также сама микросхема здесь заливается прозрачным эпоксидным материалом.

Существенный их недостаток – шумность. Поэтому применять их в жилых помещениях не рекомендуется.

Также при одинаковой мощности, они имеют самые большие габариты среди всех остальных блоков питания. Поэтому чтобы спрятать такую коробку, придется хорошенько поискать подходящее место, либо мастерить отдельную площадку.

Подобрать себе подходящие блоки питания можно у проверенных китайских товарищей:

негерметичные – тута

Slim модели – здесь

герметичные – отсюда

Что такое диммирование?

Часто требуется, чтобы электрические устройства работали не на полную мощность:

  • скорость вращения насоса снижается для сокращения объемов подачи воды;
  • обороты электродвигателя понижаются с целью сокращения потребления;
  • мощность обогревателя уменьшается, чтобы в комнате стало прохладнее.

Диммер для управления яркостью светодиодов

Осветительные приборы не является исключением, и их яркость также регулируется. Локальное освещение обеспечивается светодиодными лентами. Это расположенные в ряд источники света, соединенные проводником в виде ленты (также называемой подложкой или дорожкой).

 Диммирование светодиодной ленты используется для управления яркостью с целью интерьерного оформления и комфортного освещения. Поэтому процесс еще называется светорегулировкой.

С технической стороны это принудительное понижение рабочего напряжения. Переменный ток поступает импульсами моментного напряжения различного значения в виде синусоиды. Чтобы его понизить, достаточно с одинаковой периодичностью «отнимать» импульсы. В результате получится переменный ток ниже базового, и устройство начнет работать не на полную мощность.

Меняющее мощность на понижение устройство называется диммером, а для светодиодов — светорегулятором.

Понятие цветовой температуры и индекса цветопередачи светодиода

Можно ли отрегулировать яркость светодиода, меняя ток, проходящий через светодиод? Нет, изменение тока приведет к изменению цветовой температуры светодиода. Например, белый свет при понижении тока приобретает зеленоватый оттенок. Рассмотрим основные понятия, связанные с цветовой температурой светодиодов. Цветовая температура – это визуальный эффект, который воспринимается человеческим глазом при работе светодиода. Этот параметр показывает, каким мы видим свет – тепло-желтоватым, нейтрально белым или голубовато-холодным. Чтобы обеспечить ту или иную цветовую температуру свечения светодиода, используются различные типы люминофора. От способа его нанесения, его химического состава и толщины слоя зависит цветовая температура и яркость светодиода.

Цветовая температура измеряется в Кельвинах (°K) и указывается в справочных таблицах. Чем ниже этот параметр, тем ближе свет к «теплому». Светодиоды подразделяются на несколько групп по цветовой температуре: лампы теплого свечения 2700–3500°K, нейтрального – 3500–5300°K; холодного – 5300–6800°K. Теплый свет используется для освещения жилых помещений, мест отдыха. Нейтральный – для офисов и производственных помещений. Холодные светодиоды применяются преимущественно в качестве аварийного освещения и на особо ответственных рабочих местах.

Стоит упомянуть еще один важный параметр, связанный с цветовой температурой, — индекс или коэффициент цветопередачи (color rendering index), характеризующий степень соответствия цвета тела видимому цвету при освещении определенным источником света. Под светом двух светодиодов с одинаковой цветовой температурой предметы в помещении могут иметь различный вид. Индекс светопередачи может варьироваться в пределах 0-100 Ra. Чем выше этот коэффициент, тем более правильно человек воспринимает цвета предметов в свете лампы. По сути, индекс цветопередачи – это показатель качества света.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Особенности ленты на 220 В

Самый тривиальный вариант – применение ленты, рассчитанной на полное напряжение сети. Однако напрямую подсоединять светильник к бытовой сети крайне нежелательно. Хотя светоизлучающие элементы обладают односторонней проводимостью и светятся во время положительной полуволны синусоиды, во время отрицательной к ним прикладывается напряжение обратной полярности. Светодиоды не рассчитаны на работу в качестве высоковольтных выпрямителей, поэтому обратное напряжение для них будет слишком велико, а время жизни элементов — мало. Включать LED-ленту в работу следует через выпрямитель – лучше через собранный по мостовой (двухполупериодной схеме).


Подключение LED-ленты через диодный мост. Фазировка при таком включении не важна, фаза и ноль могут быть подключены к любой входной клемме выпрямителя.

Обратной стороной использования высокого напряжения при равной мощности является пониженный ток, поэтому отрезки полотна можно соединять последовательно суммарной длиной до 100 м (низковольтные светильники – до 5 м). Также плюсом служит возможность для соединения применить проводники пониженного сечения, но не в ущерб механической прочности.

Важно! Основным недостатком такого варианта является крайняя нежелательность применения высоковольтной ленты в помещениях. диммер

диммер

Немного о сфере применения

Приобретая светодиодную ленту, например, для дома, многие из нас даже не задумываются о возможности диммирования её светового потока. Почему? Потому что зачастую в этом нет необходимости. Например, организация подсветки на кухне под навесными шкафами или подсветка шкафа-купе, где для получения должного эффекта всегда требуется максимальная светоотдача. Другое дело, когда одноцветная или RGB-лента смонтирована по периметру потолка комнаты. В этом случае диммер поможет снизить интенсивность свечения и подобрать комфортный полумрак, а в детской комнате – на ночь задать минимальную яркость, чтобы ребёнок не спал в темноте.

Основные критерии выбора

Чтобы подобрать блок питания светодиодной ленты, нужно обратить внимание на такие ключевые характеристики данного устройства:

  • значение выходного напряжения – оно в обязательном порядке должно соответствовать по показателю осветительному прибору;
  • показатель мощности устройства – рассчитывается по специальной формуле;
  • уровень защиты;
  • наличие дополнительных функций.

Выбирая источник питания, также нужно учесть его стоимость. Защищённые от влаги модели будут стоить дороже. На ценообразование влияет метод преобразования устройства и его мощностные показатели.

Метод преобразования


Принцип работы импульсного блока питания

По способу преобразования блоки питания можно разделить на 3 основных типа:

  • линейные;
  • бестрансформаторные;
  • импульсные.

Источники питания линейного типа изобрели ещё в прошлом столетии. Они активно использовались до начала 2000-х годов, до появления на рынке импульсных устройств. Сейчас практически не применяются.

Бестрансформаторные модели малопригодны для питания светодиодных светильников. Они обладают сложной конструкцией – напряжение 220В в них уменьшается посредством RC-цепи с последующей стабилизацией.

Основной серьёзный минус – блок нельзя включать без нагрузки. В противном случае может выйти из строя силовой транзистор. На современных моделях эту проблему решили при помощи обратной связи. В итоге на холостом ходу напряжение на выходе не выходит за пределы допустимого показателя.

Охлаждение

В зависимости от применённой системы охлаждения блоки питания разделяются на 2 типа:

  • Активное охлаждение – устройство оснащается внутрикорпусным вентилятором, отвечающим за эффективность охлаждения. Такая конструкция даёт возможность взаимодействовать с достаточно высокими мощностями. При этом вентилятор может гудеть и его периодически нужно чистить, так как с воздушным потоком внутрь корпуса попадает пыль.
  • Охлаждение пассивного типа – устройство не оборудуется вентилятором (естественное охлаждение). Такие источники питания очень компактны, но при этом подходят исключительно для использования в быту, так как рассчитаны на малые нагрузки.

Исполнение


Компактный блок питания для светодиодной ленты

По типу исполнения блоки питания разделяются на такие конструкции:

  • Малогабаритный пластиковый корпус. Такое устройство внешне схоже с блоками питания от ноутбуков и обладает разборным корпусом из пластика. Модели данного класса функционируют стабильно и будут оптимальным вариантом для использования в сухих помещениях.
  • Герметичный корпус из алюминия. Конструкционные особенности, герметичность и прочность используемого материала, позволяют применять такой светодиодный блок в помещениях с повышенной влажностью. Он устойчив к воздействию влаги и выделяется длительным эксплуатационным сроком.
  • Корпус из металла с вентиляционными отверстиями. Такие устройства не защищены от внешних воздействий, поэтому монтируются в специальные закрытые коробки. Корпус открытого типа даёт возможность быстро перенастроить блок.

Выходное напряжение

Данная характеристика устанавливает, в какой номинал напряжения преобразует источник питания исходное сетевое напряжение 220В. Обычно это 12В и 24В постоянного или переменного типа. Наиболее распространёнными являются светодиодные ленты на 12В с напряжением постоянного типа. Соответственно, для них нужен блок питания маркировки DC12V.

Мощность


Потребление светодиодов

В отдельных ситуациях в расчёте мощности источника питания просто нет надобности. Например, если нужно подсоединить 1 метр ленты на светодиодах класса SMD с питанием 12В, подойдёт любой блок с неизменным напряжением на выходе 12В. Если же предполагается более мощная нагрузка, нужно будет воспользоваться формулой расчёта.

Подобрать мощность источника питания можно исходя из максимальной длины светодиодной ленты и от показателя потребления 1 метра изделия. Для облегчения такой задачи производители прописывают требования к источнику питания в инструкции к LED-ленте.

Дополнительные функции


Блок питания с пультом управления

Кроме основных характеристик, при выборе блоков питания внимание нужно обращать на наличие в них дополнительных функций:

  • могут быть тривиальными и исключительно обеспечивать питание;
  • более функциональные модели обладают встроенным диммером;
  • отдельные устройства оснащаются инфракрасным датчиком или радиоканалом для управления при помощи пульта ДУ.

Мощность блока питания

Мощность светодиодной ленты зависит от количества диодов, которые установлены на одном метре светильника. Конечно, от этого зависит и яркость источника света в целом. Производители сегодня выпускают ленты, в которых установлены диоды разного размера. Отсюда и две марки самой ленты:

  • SMD 3028.
  • SMD 5050.

Что обозначают цифровые обозначения? Это именно размерные показатели светодиодов. То есть, на первой ленте установлены источники света размерами 3,0×2,8 мм, на второй 5,0×5,0 мм. А вот теперь и о количестве диодов на одном метре изделия.

Что касается лент марки SMD 3028, то на одном метре может быть установлено 60, 120 или 240 штук. С маркой SMD 5050 есть изменения: 30,60 и 120 штук.


Марки светодиодной ленты

То есть, потребляемая мощность светодиодного ленточного источника света на 12 вольт будет зависеть от того, какая модель была выбрана для освещения и украшения комнаты. Для этого уже производителями и специалистами разработаны таблицы, в которых определена зависимость двух показателей. Вот она снизу.

Тип светодиодаКоличество светодиодов на 1 м лентыМощность, Вт
SMD 3528604,8
SMD 35281207,2
SMD 352824016
SMD 5050307,2
SMD 50506014
SMD 505012025

Давайте рассмотрим, как подобрать блок питания для светодиодной ленты, скажем для изделия марки SMD 3528 с количеством лампочек в 60 штук. Будем считать, что к блоку придется подключать две ленты.

Длина каждой ленты стандартная и равна 5 м. То есть, получается, что к блоку придется подсоединять сразу 10 м осветительной ленты. Смотрим в таблицу, в ней данной марке и количеству диодов соответствует показатель мощности, равный 14 Вт. И это потребляемая мощность одного метра, значит, данный показатель необходимо увеличить в десять раз. В конечном итоге получается 140 Вт.

Специалисты рекомендуют приобретать прибор с запасом в 30%. Значит, конечный результат: 140×1,3=182 Вт.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий