Как проводить измерения мегаомметром

Какие меры безопасности должны соблюдаться при работе с мегомметром

Все, казалось бы, чрезвычайно просто. Но, оказывается, такие приборы относятся исключительно к категории профессиональных. И далеко не все работники могут быть допущены к их эксплуатации – требуется определенное обучение и получение соответствующего допуска – не ниже третьей группы электробезопасности.

Автор статьи в данном случае ни в коем случае не рекомендует, как обычно принято на строительных сайтах, выполнять измерения своими руками. Но если уж какой-то хозяин дома или квартиры возьмёт на себя смелость и ответственность за выполнение самостоятельных измерений – он должен по меньшей мере максимально соблюдать требования безопасности выполнения работ.

Сам прибор не должен иметь никаких механических повреждений корпуса

Особое внимание — целостности изоляции измерительных проводов, исправности щупов, зажимов-«крокодилов», штыревых контактов для подключения к мегомметру.
Любой тестируемый объект или линия в обязательном порядке обесточивается. Все автоматы переводятся в положение «выключено» или, в старых распределительных щитах, выкручиваются плавкие предохранители – пробки

В некоторых случаях требуется временное отсоединение проводов от выходных клемм автоматических выключателей.

Перед тестированием сопротивления изоляции проводится полное обесточивание объекта

На намеренно отключенное состояние сети желательно акцентировать внимание установкой таблички, например, «Не включать! Идут работы». Так, чтобы никто из домашних или помощников случайно не включил автоматы во время тестирования

От сети отключаются все приборы. Вилки вынимаются их розеток. Лампочки выкручиваются из патронов светильников

Особое внимание – приборам с точной электроникой. Подаваемое в линию высокое напряжение может запросто их «убить»

Изо всех розеток вытаскиваются вилки. Из светильников (не забываем и про точечные) выкручиваются (вынимаются) лампы.

Готовится к работе так называемое переносное заземление. Мастера пользуются приспособлением заводского изготовления, но вполне можно сделать вполне рабочее устройство и самому.

Переносное заземление заводского производства. Нечто подобное делается и собственными руками.

Оно может представлять собой отрезок медного многожильного провода требуемой длины, сечением не менее 1,5 мм². Один его конец зачищается, и может быть оснащен клеммой или зажимом-крокодилом с расчетом на подключение к шине заземления. Второй конец, также зачищенный, необходимо укрепить на диэлектрической штанге. Хорошо, если найдется пластиковый стержень нужной длины. Если нет, то подойдет и сухая деревянная рейка, на краю которой и крепится зачищенный конец провода, например, несколькими витками изоленты. Место на штанге, за которое придется браться руками, тоже можно «одеть» в пару слоев изоленты. А длина штанги выбирается такой, чтобы было удобно касаться концов тестируемых проводов с безопасного расстояния.

После каждого замера рекомендуется снимать остаточное напряжение в проверяемых проводниках касанием этого переносного заземления. Кстати, при тестировании линий значительной протяженности заряд может оставаться в них нешуточный, способный нанести тяжелую электротравму.

Работы по замеру сопротивления изоляции желательно проводить в диэлектрических перчатках. Многие это игнорируют и, наверное, напрасно. В ходе замеров, особенно по неопытности, ничего не стоит коснуться щупа или токоведущей детали, скажем, тыльной стороной ладони. А работать-то приходится с напряжениями, порой достигающими и 2500 вольт! Не шутка!
Необходимо правильно обращаться со щупами

Если обратить внимание, то на каждом из них на рукоятке имеется бортик, своеобразная гарда. Это не столько для удобства, сколько для обеспечения безопасности

Тем самым задается граница безопасной для пальцев зоны, пересекать которую при проведении замеров – запрещается.

Гарды на рукоятках щупов четко ограничивают расположение пальцев оператора. Ближе к оголённой части – становится опасным.

После каждого замера должно сниматься остаточное напряжение и в щупах мегомметра. Для этого их оголенные концы просто замыкают между собой. Надо сказать, что современные приборы часто оснащаются функцией автоматического разряда после снятия каждого показания. Но лучше перестраховаться, а у многих электриков такое замыкание контактов после каждого замера – просто вошло в привычку.

Действие остаточного напряжения

При выдаче генератором мегаомметра напряжения, поступающего в измеряемую сеть, между проводом и контуром заземления возникает . Это приводит к образованию емкости, наделенной определенным зарядом.

После того как измерительный провод отключается, цепь мегаомметра становится разорванной. За счет этого потенциал частично сохраняется, поскольку в проводе или шине создается емкостной заряд. В случае касания этого участка, человек может получить электротравму от разряда тока, проходящего через тело. Для того чтобы избежать подобных неприятностей, следует . Его рукоятка должна быть заизолирована, что дает возможность безопасно снимать емкостное напряжение.

Перед тем как подключать мегаомметр для замеров изоляции, необходимо чтобы в проверяемой схеме отсутствовал остаточный заряд или напряжение. Для этого существуют специальные индикаторы или вольтметр с соответствующим номиналом. С помощью мегаомметра можно выполнять самые разные замеры. Например, изоляция в десятижильном кабеле вначале проверяется относительно земли, а затем измеряется каждая жила. Качество изоляции определяется по очереди между всеми жилами. Во время каждого измерения следует использовать переносное заземление.

Чтобы обеспечить быструю и безопасную работу, заземляющий проводник изначально одним концом соединяется с . В таком положении он остается до конца работ. Другим концом проводник контактирует с изоляционной штангой. Именно при ее непосредственном участии накладывается заземление, чтобы снять остаточный заряд.

Порядок проверки сопротивления изоляции кабеля мегаомметром

Приходишь на объект, и видишь например следующую картину.

Перед непосредственно проверкой сопротивления изоляции надо убедиться, что:

  • на жилах кабеля, куда будем подавать напряжение нет грязи, нагори, краски (на жиле кабеля такого нет, но это может быть на заземлении, которое окрашивают или же оно может быть покрыто слоем ржавчины, тогда надо отскрести отверткой или ножом)
  • на другом конце кабеля никто не работает и кабель отсоединен от нагрузки и источника питания (не стоит подавать напряжение на монтажника, который может разделывать кабель с другой стороны, или замерять Rx кабеля с нагрузкой, также стоит проследить, чтобы мы не подали высокое напряжение на вторичные цепи и элементы, которые могут от 2500В прийти в негодность, поэтому иногда их просто мегерят на 500В)
  • кабель обесточен и предусмотрены меры, не допускающие случайную подачу напряжения на испытуемый кабель (замки, плакаты, выкачены ячейки)
  • если мегер-тест (измерение сопротивления изоляции) идет в комплексе с высоковольтными испытаниями, то нужно убедиться, что на втором конце кабеля (второй конец – противоположный от места испытания) выставлен человек или помещение заперто и огорожено с вывешенными плакатами
  • мегаомметр находится в исправном состоянии и годен к эксплуатации (клеймо поверки на корпусе и концы прибора испытаны)
  • вы имеете право и квалификацию работать с мегаомметром и производить данный вид работ (3 группа по электробезопасности и не просроченная проверка специальных знаний, плюс медосмотр)
  • провода мегаомметра должны иметь высокую изоляцию (тут можно еще сделать следующее: свести два провода мегаомметра и подать напряжение – значение должно быть нулевым, так как изоляции между проводами нет, а если развести – то бесконечность – так как сопротивление воздуха велико)

После того, как вышеприведенные пункты стали очевидно реализованы, можно приступать к делу. Помегерим!

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Если показания больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Если необходимо проверить многожильный кабель, тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Если жил много, перед тем как пользоваться мегаомметром, жилы зачищают от изоляции и скручивают в жгут

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут

При образовании жгута важно обеспечит хороший контакт

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

https://youtube.com/watch?v=jOaLpf4g1Sk

Устройство прибора

Для ознакомления лучше всего рассмотреть схему аналогового прибора в упрощенном варианте.

Основные элементы конструкции:

  • Традиционный для любой модели генератор постоянного тока.
  • Собранная по принципу взаимодополняющей совместной эксплуатации пары рамок измерительная головка.
  • Коммутирующий резисторные цепочки тумблер переключения измерительных пределов.
  • Резисторы токоограничения.

На корпусе, выполненном из герметичного диэлектрического материала, обустроены:

  • рукоятка для выработки напряжения генератором;
  • транспортировочная ручка;
  • тумблерный рычаг;
  • выходные клеммы.

Обычно производится монтаж трех клемм, именуемых экраном, линией и землей.
«Л» и «З» нужны при тестировании относительно заземления, а экран предотвращает воздействие токов утечек в случае замеров между токоведущими частями. Его активация производится при помощи специального измерительного провода с концами экранированного исполнения. На одной из клемм провода есть маркировка Э, обозначающая подключение к мегаомметру.

Аббревиатура «rx» и «-» на современных приборах постепенно вытеснила привычное для прежних образцов обозначение «Л» и «З».

Питания от внешней сети или батареек – это работа, основанная на таком же принципе, как и в случае с динамо-мащиной. Просто вместо необходимости крутить ручку следует удерживать в нажатом положении кнопку. Устройства, выдающие несколько комбинаций напряжения, имеют несколько сочетаний кнопок.

Генератор различных модификаций способен выдавать несколько величин напряжение в диапазоне 100-2500 вольт. Есть устройства, обладающими несколькими рабочими диапазонами.

Габариты приборов проверки изоляции для промышленного и бытового оборудования отличаются по причине разных параметров выходной мощности.

Следовательно, при выборе прибора обязательно потребуется скрупулезный подход, который производится со знанием специфики места проведения исследований, характеристик оборудования и масштабов проводимых испытаний. Не всегда компактность становится целесообразным способом, как и приобретение громоздких устройств для сугубо бытовых условий.

Безопасность при измерениях

Измерения мегаомметром всегда сообщают изолированным проводникам заряды, и чем лучше качество изоляции, тем дольше держится заряд. В целях безопасности обязательно снимают эти заряды при помощи проводов с изолированными рукоятками. Закорачивают точки подсоединения проводов от прибора и каждый из проводников дополнительно замыкают на землю. Цель одна — снять все остаточные заряды для безопасности людей.

Измерение изоляции электроустановок выполнить легче, чем линий и сетей, по причине сосредоточенности и близости к персоналу. Ниже приводится пошаговый порядок действий при измерениях на линиях.

Допустимые значения сопротивления изоляции

Величины сопротивления изоляции (Rx) кабелей различных типов должны быть выше допустимых значений. Допустимые значения определяются в ГОСТах, технических условиях, нормах и объемах испытания электрооборудования. Если брать нормы по испытанию сопротивления изоляции силовых кабельных линий, то тут всё просто:

  • испытываются мегаомметром на 2500В на протяжении 1 минуты
  • значение Rх должно быть больше 0,5 МОм для кабелей до 1кВ включительно
  • для кабелей напряжением выше 1кВ значение сопротивления изоляции не нормируется, а факторами, определяющими пригодность является величина тока утечки при высоковольтных испытаниях и отсутствие пробоев

Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)

Мегаомметр ЭСО-210

Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой – трансформатор, преобразующий переменное напряжение в постоянное.

Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».

Шкала «I» – нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.

Шкала «II» – верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.

Шкала «IIx10» – аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.

В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.

При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.

Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.

Мегаомметр sonel mic-2510

Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом “энтер” и всё – следи за показаниями и не подпускай никого под напряжение.

Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.

Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.

Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм – впечатляющая величина.

Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.

Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.

В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.

Принцип измерения сопротивления изоляции мегаомметром.

В основу работы прибора положен знаменитый закон Ома для участка цепи I=U/R. Для его воплощения внутри корпуса у любой модификации встроены:

  • источник постоянного, откалиброванного напряжения
  • измеритель тока
  • выходные клеммы

Конструкция генератора напряжения может меняться в значительных пределах и создаваться на основе простых ручных динамо-машин, как в старых моделях, или за счет использования питания от встроенного либо внешнего источника. Выходная мощность генератора, как и величина его напряжения, может включать несколько диапазонов или выполнятся единственной, фиксированной величиной. На клеммы прибора подключаются соединительные провода, другой конец которых скоммутирован с измеряемой цепью. Для этих целей обычно используют зажимы типа «крокодил». Встроенный внутрь электрической схемы амперметр замеряет проходящий по цепи ток. С учетом того, что напряжение генератора уже известно и откалибровано, то шкала измерительной головки проградуирована сразу в пересчитанных единицах сопротивления — мегаомах или килоомах.

Так выглядит шкала старого, проверенного пятидесятилетним сроком эксплуатации аналогового прибора. Он позволяет выполнять замеры на двух пределах шкал:

Если мегаомметр создан по новым технологиям обработки цифровых сигналов, то на его дисплее тоже отображается сопротивление, но в более наглядном виде.

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Если показания больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Если необходимо проверить многожильный кабель, тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Если жил много, перед тем как пользоваться мегаомметром, жилы зачищают от изоляции и скручивают в жгут

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут

При образовании жгута важно обеспечит хороший контакт

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

https://youtube.com/watch?v=jOaLpf4g1Sk

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Мегаомметр

Мегаомметр — что это такое

Мегаомметр — это специальный прибор, который используют профессиональные электрики для измерения сопротивлений обмотки электросетей и электроприборов. Отличие мегаомметра от омметра состоит в том, что мегаомметр измеряет большие значения сопротивления на высоком напряжении. Напряжение для проверки сопротивления мегаомметр генерирует самостоятельно с помощью встроенного механического генератора или батарей. Величина напряжения составляет от 100 до 2500 вольт и устанавливается по значениям 100, 500, 700, 1000 и 2500 вольт.

По внешнему виду магаомметр представляет из себя прямоугольную коробочку с аналоговой шкалой с делениями в два ряда и стрелкой, которая указывает показания сопротивления при измерении изоляции. С боку располагается ручка динамо машины, раскручивая которую, вырабатывается постоянное напряжение, с помощью которого и измеряется сопротивление изоляции на измеряемом участке.

Но это мы описали внешний вид аналогового мегаомметра, современные измерители сопротивления изоляций имеют меньшие габариты, не имеют динамо машины, вместо нее батарейки или даже подключается питание от сети. Вместо аналогового датчика со стрелкой используется цифровое табло, а также есть память на некоторые прошлые циклы измерений.

Для чего нужен мегаомметр

Мегаоммерт используют для выявления повреждений в изоляции электросетей перед вводом в эксплуатацию, так же при выявлении мест уже появившихся аварийных ситуациях. Для проверки изоляции кабеля в трансформаторах, электродвигателях и любых других устройств, которые имеют электрическую обмотку с изоляцией. Основное использование мегаомметра – это измерение изоляции кабелей или другими словами, измерение сопротивления изоляции кабеля.

Испытания изоляции кабелей мегаомметром могут выявить слабые места в электросетях, как электропроводке зданий, так и в электродвигателях. Показатели, которые снимают мегаомметром, используют для определения степени изношенности изоляций, что может предотвратить неожиданные и нежелательные случаи короткого замыкания. А короткое замыкание происходит при механическом повреждении или при старении изоляции, когда токопроводящие жилы соприкасаются между собой.

Принцип работы мегаомметра

Мегаомметр работает по принципу вырабатывания различного напряжения, которое подается на испытуемый участок электросети для проверки сопротивления изоляции кабеля. В зависимости от номинальной нагрузки измеряемого прибора или электрического кабеля используют соответствующее напряжение. Перед испытанием подбирается подходящий мегаомметр, например, если нужно проверить бытовые приборы или проводку в квартире, то используется мегаомметр с напряжением не больше 250В.

Если простыми словами, то мегаомметрт подает постоянное напряжение на участок кабеля, который мы проверяем на наличие нормальной изоляции. Фиксируются показатели утечки напряжения и на основании этих показателей делаются выводы относительно нормы показателя изоляции испытуемого кабеля. Если утечка больше нормы, то считается, что изоляция повреждена и имеет место быть короткому замыканию. Что недопустимо при нормальной эксплуатации электрических сетей, т.к. чревато возгоранием кабелей, если не сработает автоматика отключения контактов при коротком замыкании кабелей.

Какие бывают мегаомметры

Название моделиДиапазон измерения сопротивленияИзмерительное напряжениеМасса прибораГабаритные размеры
ЦС0202-1, ЦС0202-2от 200 кОм до 100 ГОмот 100 В до 2500 Вдо 1 кг.220х156х61 мм.
ЭС0210, ЭС0210-Гот 0 кОм до 100 ГОмот 0 В до 600 Вдо 1,9 кг.155х141х201 мм.
ЭС0202/1-Г, ЭС0202/2-Гот 0 кОм до 10 ГОмот 100 В до 2500 Вдо 2,2 кг.210х150х230 мм.

Мегаомметры отличаются внешним исполнением и внутренним устройством. Аналоговые измерители сопротивления кабелей имеют динамо машину, которая, путем вращения за специальную ручку, вырабатывает постоянное напряжение, которым производятся замеры изоляции. Так же имеется аналоговое табло с делениями по двум шкалам и механическая стрелка, которая указывает на показатели. Более современные мегаомметры вместо динамо машины имеют элементы питания: аккумуляторные батареи или непосредственный блок питания. Есть цифровое табло, отображающее снимаемые показатели изоляции и память, которая хранит данные прошлых измерений.

У каждого мегаомметра есть свои плюсы и свои минусы, аналоговый больше по размерам и тяжелее, по сравнению с цифровым, но цифровой имеет прямую зависимость от элементов питания, когда аналоговый готов всегда к работе. Но выбор, каким мегаомметром пользоваться, всегда остается за вами.

{SOURCE}

Проверка мегаомметра

Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат.
Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

Для работы в мегаомах:

  • подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
  • вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
  • замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

Для работы в килоомах:

  • на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
  • Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
  • После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий