Как подключить лампу дневного света: особенности схемы

Общий принцип работы элемента

По сути, балласт для люминесцентных ламп представляет собой дроссель. Он регулирует силу подачи тока, ограничивая или разделяя разночастотные электрические сигналы. Ликвидирует пульсации постоянного тока. Происходит нагрев катодов люминесцентных ламп.

Далее, на них производится подача необходимого количества напряжения, которое активирует работу осветительного прибора. Напряжение корректируется с помощью особого регулятора, который впаян в инверторную схему. Именно он отлаживает диапазон напряжений. За счет вышеперечисленных особенностей работы балласта мерцание в источнике света полностью исключается.

В схему встроен и стартер. Его функции – трансляция напряжения и зажигание. При включении лампы, на микросхеме балласта происходит снижение силы тока. Данная особенность позволяет выстроить необходимый режим работы осветительного прибора.

Сегодня на рынке широко представлены такие виды балластных устройств, как:

  • электромагнитные;
  • электронные;
  • балласты для компактных ламп.

Представленные категории отмечены надёжной работой и обеспечивают длительное функционирование и простоту эксплуатации всех люминесцентных ламп. Все эти приборы имеют идентичный принцип действия, однако отличаются по некоторым пунктам.

Электромагнитные

Данные балласты применимы для ламп, подключенных к электросети при помощи стартера. Первично возникающий разряд интенсивно разогревает и замыкает биметаллические электродные элементы. Происходит резкое увеличение рабочего тока.

Электромагнитный балласт легко узнать по внешнему виду. Конструкция более массивная, по сравнению с электронным прототипом.

При выходе из строя стартера, в схеме электромагнитного балласта, возникает фальстарт. При поступлении питания лампа начинает мигать, впоследствии идёт ровная подача электроэнергии. Эта особенность значительно снижает рабочий ресурс источника освещения.

ПлюсыМинусы
Высококлассный уровень надежности, доказанный практикой и временем.Долгий запуск — на первом этапе эксплуатации запуск осуществляется за 2-3 секунды и до 8 секунд к моменту завершения срока службы.
Простота конструкции.Повышенный расход электроэнергии.
Удобство эксплуатации модуля.Мерцание лампы с частотой 50 Гц (эффект стробирования). Негативно влияет на человека, который длительно находится в помещении с подобным видом освещения.
Доступная цена для потребителей.Слышен гул работы дросселя.
Количество фирм производителей.Значительный вес конструкции и громоздкость.

Электронные

Сегодня применяются магнитные и электронные балластники, которые состоят в первом случае из микросхемы, транзисторов, динисторов и диодов, а во втором – из металлических пластин и медного провода. Посредством стартера лампы запускаются, причем в качестве единой функции этого элемента с балластником в одной схеме организовано явление в электронном варианте детали.

  • малый вес и компактность;
  • плавное быстрое включение;
  • в отличие от электромагнитных конструкций, которым для работы требуется сеть 50 Гц, высокочастотные магнитные аналоги функционируют без шумов от вибрации и мерцания;
  • снижены потери на нагревание;
  • коэффициенты мощности в электронных схемах достигают 0,95;
  • продленный срок эксплуатации и безопасность применения обеспечиваются несколькими видами защиты.
ДостоинстваНедостатки
Автоматическая настройка балласта под различные виды ламп.Более высокая стоимость, по сравнению с электромагнитными моделями.
Моментальное включение осветительного прибора, без дополнительной нагрузки на устройство.
Экономия потребления электроэнергии до 30%.
Исключен нагрев электронного модуля.
Ровная световая подача и отсутствие шумовых эффектов в процессе освещения.
Увеличение срока службы люминесцентных ламп.
Дополнительная защита гарантирует увеличение степени пожаробезопасности.
Снижение рисков в процессе эксплуатации.
Ровная подача светопотока исключает быструю утомляемость.
Отсутствие негативных функций в условиях пониженных температур.
Компактность и легкость конструкции.

Для компактных люминесцентных ламп

Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.

Вариант включения с двумя балластами и двумя трубками

При наличии двух источников освещения, а также двух комплектов для их соединения, нужно использовать такой вариант.

Подключение с двумя комплектами

В данной ситуации соединение осуществляется следующим образом:

  • на вход дросселя подается фазный провод;
  • далее он с выхода дросселя направляется на один контакт экономки. При этом со второго коннектора он идет на первый стартер;
  • с первого стартера он направляется на вторую пару коннекторов этого же источника света;
  • свободный коннектор необходимо соединить с нулевым проводом питания, который на рисунке обозначен как N

Таким же образом происходит включение и второй трубки: вначале идет дроссель, далее с него один коннектор направляется на контакт лампочки, а второй – на стартер. Выход со стартера нужно соединить со второй парой контактов светильника, а свободный коннектор — вывести на нулевой провод.

Как подключить лампу

Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.

Подключение с использованием электромагнитного балласта

Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.

Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.


Подключение при помощи ЭмПРА.

Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:

  • значительный расход электроэнергии;
  • длительный запуск, который может занимать 3 с;
  • схема не способна функционировать в условиях пониженных температур;
  • нежелательное стробоскопическое мигание, негативно влияющее на зрение;
  • дроссельные пластинки по мере износа могут издавать гудение.

Схема включает один дроссель на две лампочки, для одноламповой системы метод не подойдет.

Две трубки и два дросселя

В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.

Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.


Схема с двумя трубками и двумя дросселями.

От стартера контакт идет к лампе, а свободный полюс — к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.

Схема подключения двух ламп от одного дросселя

Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.


Схема подключения двух светильников от одного дросселя.

Электронный балласт

Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.

Такие аппараты не гудят во время работы и потребляют значительно меньше электроэнергии. Мерцаний не появляется даже при низких частотах напряжения.


Подключение с помощью электронного балласта.

Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.

Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.

Использование умножителей напряжения


Использование умножителей напряжения.

Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.

Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для  его стабилизации используются конденсаторы.

Тематическое видео: Подробно про умножитель напряжения

Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость. Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу

Можно установить переключатель, чтобы не разбирать прибор

Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.

Подключение без стартера


Схема подключения без стартера.

Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.

В продаже можно найти аппараты с маркировкой RS, которая говорит о возможности подключения без стартера. Установка такого элемента в осветительный прибор помогает значительно сократить время зажигания.

Электронный балласт

Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.

Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.

На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:

  • первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
  • третий и четвертый подаете на другую пару;
  • ко входу подаете питание.

Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).

Преимущества электронных балластников описаны в видео.

Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.

Подключение с помощью современного электронного балласта

Устройства ЭмПРА имели ряд недостатков, что сильно ограничивало сферу применения люминесцентных источников света:

  • Долгий запуск светильников (достигал 3-х секунд, а выход на полную мощность мог достигать нескольких минут);
  • Проявление стробоскопического эффекта, что очень опасно для производства. При определённой частоте мерцания, вращающиеся механизмы могут показаться остановленными;
  • Неработоспособность при низких температурах. Например, в подвале или гараже использовать в холодное время года люминесцентные источники было невозможно;
  • Шумная работа — дроссель часто гудел, как при запуске, так и во время работы светильника;
  • Установка ЭмПРА в люминесцентных светильниках усложняет схему подключения, так как такой балласт состоит из нескольких раздельных блоков.

Современный тип ПРА – электронный. Это моноблок с печатной платой, на которой собрана вся схема для разогрева и запуска с помощью электронных компонентов. Так как вся схема собрана в едином корпусе, то не нужно собирать схему из дросселей и стартеров. Источники света подключаются только к выведенным клеммам на выходе блока.

Лампы Схемы подключения диммера

50124.02.2023

ЭПРА работает на повышенной частоте, от 60 до 140 кГц, что исключает появление мерцания и стробоскопического эффекта. Запуск происходит быстро, без дополнительных вспышек и звуковых эффектов.

Электронный балласт

Современные компоненты позволяют изготавливать электронные ПРА более экономичными и компактными, что позволяет встраивать ЭПРА в корпус осветительного прибора. А также появилась возможность изготавливать малогабаритные люминесцентные лампы, например, с цоколем Е27, часто называемые энергосберегающими. Колба, у таких источников света часто изготовлена в виде спирали, что позволяет сделать её большой длины при меньших габаритах. Подключаются такие источники света к сети простым вкручиванием в патрон.

Компактная люминесцентная лампа

Можно выделить следующие достоинства ЭПРА:

  • Быстрый запуск в работу;
  • Больше экономичность, по сравнению со старыми типами электромагнитных балластов;
  • Отсутствие шума при запуске и работе;
  • Некоторые модели работают также при отрицательных температурах;
  • Высокая отказоустойчивость;
  • Отсутствие сильного нагрева;
  • Стабильный световой поток.

Принцип работы ЭПРА

После подачи питания, напряжение выпрямляется диодным мостом и конденсатором и поступает на высокочастотный генератор. Импульсы высокой частоты поступают на электроды источника света. При высокой частоте интенсивность нагрева электродов не так интенсивна, но со временем частота начинает падать. При этом напряжение в источнике света увеличивается, контур питания близится к резонансу, интенсивность нагрева растёт.

В определённый момент, происходит пробой газовой среды, и лампа начинает светиться. Устройство ЭПРА таково, что если, со временем эксплуатации, источнику света потребуется большее напряжение для пробоя и начала работы, то он сможет его обеспечить, из-за особенностей своей работы.

Особенности схемы

Так как электронный балласт выполнен в едином корпусе с выведенными наружу клеммниками, то подключить его не составляет особого труда. Не требуется сборка схемы с дросселем и стартером. Тем более, что на корпусе схема соединения с источниками света чаще всего напечатана. Если же её нет, то она обязательно будет в инструкции к устройству.

На входные клеммы ЭПРА подключаются фаза, ноль и заземление от внешней сети. А на выходе два двойных клеммника, куда подключается одна лампа. Типовая схема подключения к одному источнику света выглядит примерно так:

Схема подключения люминесцентной лампы к ЭПРА

Но, так как конструкция балласта может отличаться, а также он может быть предназначен для подключения нескольких источников света, то лучше внимательно рассмотреть схему в инструкции для каждого конкретного устройства.

Схема подключения ЭПРА на две лампы

Также различные схемы подключения люминесцентных источников света, для понимания, можно посмотреть в видео:

Как подключить люминесцентную лампу

Принцип работы и устройство люминесцентного светильника

В основе работы люминесцентных источников света лежит способность ртути в состоянии пара, в среде инертного газа излучать ультрафиолетовый световой поток. Для того, чтобы источник начал излучать свет нужно высокое пусковое напряжение. Оно испаряет ртуть, прогревает электроды и пробивает среду инертного газа. А после поджига, источник света может работать на небольшом рабочем напряжении.

Устройство люминесцентной лампы

Люминесцентный источник света классической конструкции представляет из себя герметичную колбу, заполненную инертной газовой средой (чаще используется аргон) с небольшим количеством ртути. По краям источника находятся два электрода, которые осуществляют розжиг, а затем поддерживают дальнейшее горение.

Так как ультрафиолетовый свет, изначально излучаемый внутри осветительного прибора, не виден человеческому глазу, поверхность колбы изнутри покрыта люминофором, который изменяет длину волны светового потока. Меняя состав люминофора, можно менять цветовую температуру света от тёплого к холодному, что позволяет выпускать люминесцентные источники света для различных сфер применения.

Также, вследствие низкого энергопотребления в рабочем режиме, люминесцентные источники имеют значительно меньшую мощность, при одинаковом световом потоке, по сравнению с источниками света с нитью накаливания.

Накаливания, ВтЛюминесцентные, ВтСветовой поток, Лм
20450
255100
357200
409300
5010400
6011500
6514600

Таблица соответствия мощности люминесцентных и ламп накаливания

Для обеспечения сложного алгоритма запуска лампы и поддержания её в рабочем режиме, схема подключения люминесцентной лампы к сети включает пускорегулирующее устройство. Старый тип ПРА – электромагнитное пускорегулирующее устройство (ЭмПРА). Оно состоит из стартера и дросселя, которые зачастую были отдельными элементами. Подключение этих элементов к люминесцентной лампе производилось в корпусном светильнике, где собиралась вся схема.

Дроссель ЭмПРАСтартер ЭмПРАСоставные части ЭмПРА

Старый тип ПРА имел массу недостатков. Впоследствии появился новый тип – электронный пускорегулирующий аппарат. Он стал моноблочным, малогабатирным. Появилась возможность выпускать люминесцентные источники света для цоколя Е27, которые сразу же назвали энергосберегающими. Разберёмся, как и по каким схемам можно подключить люминесцентную лампу к старому и новому типам ПРА.

Классическая схема включения люминесцентных ламп

Несмотря на технический прогресс и все преимущества электронных пускорегулирующих аппаратов (ЭПРА), и по сей день часто встречается схема включения с дросселем и стартером. Напомним, как она выглядит:

Люминесцентная лампа — это колба, которая конструктивно выполняется как прямая и закрученная трубка, наполненная парами ртути. На её концах расположены электроды, например, спирали или иглы (для изделий с холодным катодом, которые используются в подсветке мониторов). Спирали имеют два вывода, к которым подается питание, а стенки колбы покрыты слоями люминофора.

Принцип работы стандартной схемы подключения люминесцентной трубки с дросселем и стартером довольно прост. В первый момент времени, когда контакты стартера холодны и разомкнуты – между ними возникает тлеющий разряд, он нагревает контакты и они замыкаются, после чего ток течет по такой цепи:

Фаза-дроссель-спираль-стартер-вторая спираль-ноль.

В этот момент под воздействием протекающего тока разогреваются спирали, при этом остывают контакты стартера. В определенный момент времени контакты от нагрева изгибаются и цепь разрывается. После чего, за счет энергии, накопленной в дросселе, происходит всплеск напряжения и в лампе возникает тлеющий разряд.

Такой источник света не может работать напрямую от сети 220В, потому что для ее работы нужно создать условия с «правильным» питанием. Рассмотрим несколько вариантов.

3

Особенности электронной схемы – современный вариант

Основное преимущество такого способа – более продолжительная служба ЛДС. Устройство собрано на микросхемах, благодаря этому у него компактные размеры, низкое энергопотребление. Прибор работает на частоте 130 кГц, свет от этого ровный, не мерцает. С применением электроники также собирают современные люминесцентные лампы, у которых балласт расположен в стандартном цоколе.

Конструктивно это печатная плата, размещенная в небольшом корпусе. На обратной стороне имеется схема подключения, из которой понятно, как и сколько ламп подключается. Графическую информацию повторяют надписи. Имеются удобные контакты, куда требуется вставить провода.

ЭПРА выполняет те же функции, что и дроссель со стартером, но делает это более качественно.

Схема подключения электронного балласта устроена так, что регулирующее устройство подстраивается под потребности лампы. Чем старее светильник, тем более высокое напряжение необходимо для пуска. ЭПРА это учитывает и обеспечивает качественную работу прибора.

По сравнению с ЭмПРА электронный балласт обладает большими преимуществами:

высокая экономичность и надежность;бережно прогревает электроды и плавно включает лампочки;малый вес, компактность;самостоятельно адаптируется под светильник;низкие температуры не влияют на работоспособность.

К недостаткам относят несколько усложненную схему подключения. Ошибки в монтаже недопустимы – не только не засветится лампочка, но и устройство выйдет из строя.

Полупроводниковый балласт можно установить вместо электромагнитного. Как это сделать, показывает видео.

Замена лампы

Если отсутствует свет и причина проблемы лишь в том, чтобы заменить перегоревшую лампочку, действовать нужно следующим образом:

Разбираем светильник

Делаем это осторожно, чтобы не повредить прибор. Поворачиваем трубку по оси

Направление движения указано на держателях в виде стрелочек

Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях. Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность. Завершающее действие — монтаж рассеивающего плафона

Направление движения указано на держателях в виде стрелочек. Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях. Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность. Завершающее действие — монтаж рассеивающего плафона.

Принцип работы люминесцентного светильника

Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.

Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).

Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.

Watch this video on YouTube

Для чего нужен дроссель

Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:

  • формирование напряжения запуска;
  • ограничение тока через электроды.

Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.

Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.

В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.

Отличия дросселя от ЭПРА

Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.

В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:

  • длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
  • большие искажения формы напряжения питающей сети (cosф<0.5);
  • мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
  • большие массо-габаритные характеристики;
  • низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
  • низкая надежность запуска при отрицательных температурах.

Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.

Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.

Watch this video on YouTube

Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:

  • с предварительным подогревом электродов;
  • с холодным запуском.

В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.

Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).

Схемы с электронным дросселем имеют такие преимущества:

полное отсутствие мерцания; широкий температурный диапазон использования; малые искажения формы напряжения сети; отсутствие акустических шумов; увеличение срока службы источников освещения; малые габариты и вес, возможность миниатюрного исполнения; возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий