Технические характеристики мотор – редуктора: Обзор

Классификация, основные параметры редукторов

В зависимости от типа зубчатой передачи редукторы бывают цилиндрические, конические, волновые, планетарные, глобоидные и червячные. Широко применяются комбинированные редукторы, состоящие из нескольких совмещенных в одном корпусе типов передач (цилиндро-конические, цилиндро-червячные и т.д.).

Конструктивно редукторы могут передавать вращение между перекрещивающимися, пересекающимися и параллельными валами.
Так, например цилиндрические редукторы позволяют передать вращение между параллельными валами, конические – между пересекающимися, а червячные – между пересекающимися валами.

Общее передаточное число может достигать до нескольких десятков тысяч, и зависит от количества ступеней в редукторе. Широкое применение нашли редукторы, состоящие из одной, двух или трех ступеней, при чем они могут, как описывалось выше, совмещать разные типы зубчатых передач.

Ниже представлены наиболее популярные виды редукторов, серийно выпускаемые промышленностью.

Виды мотор-редукторов

Сегодня разработано большое число вариантов мотор-редукторов, различающихся типом двигателя, принципом построения механической части и общей геометрией. Практически все возможные комбинации присутствуют в каталогах производителей.

По виду механического зацепления подразделяют цилиндрические, конические, червячные и планетарные модели. По взаимному расположению входного и выходного валов рассматривают соосные, параллельные и угловые варианты. Исходя из передаваемых мощностей выделяют модули обычного размера и мини мотор-редукторы. По типу присоединения к процессу, встречаются варианты с одно- и двухсторонним валом, а также с полым выходным валом.

Цилиндрические мотор-редукторы

Агрегаты, использующие классические цилиндрические редукторы получили большое распространение, благодаря простоте, надежности и универсальности механической части устройства. Их использование возможно в широком спектре оборудования. В зависимости от общей конструкции, цилиндрические мотор-редукторы выполняются с соосными или параллельными валами. Количество ступеней может варьироваться от одной до шести.

По способу расположения шестерен и общей компоновке выделяют горизонтальные и вертикальные модели. Такие устройства характеризуются высоким КПД, долговечностью и относительно невысокой стоимостью.  В отличие от многих других вариантов, цилиндрические редукторы обычно не допускают произвольного расположения в пространстве, что значительно ограничивает их область применения.

Конические мотор-редукторы

Устройства, собранные на основе конических шестерен, позволяют построить угловой конический мотор-редуктор. Его главной особенностью будет перпендикулярное расположение входного и выходного валов. Это ориентирует их на использование в устройствах, требующих смены направления осей. Также конические модели выгодно устанавливать в конструкциях, предъявляющих ограничение по одному из габаритных размеров устройства. Редукторы данного типа отличаются более высокой стоимостью, в виду значительной сложности изготовления отдельных деталей. Передаточное отношение конических моделей обычно невелико. Для его повышения, коническую и цилиндрическую передачи часто комбинируют, результатом чего становится коническо-цилиндрический мотор-редуктор.

Червячные модели

Сегодня, огромную популярность приобрели червячные одноступенчатые мотор-редукторы. В качестве механической передачи в них используется червячная пара. Она обеспечивает высокое передаточное отношение при сравнительно небольших габаритах. Благодаря этому стоимость червячных моделей ниже аналогов с иной конструкцией. Среди других особенностей следует выделить перпендикулярное расположение валов и самостоятельное затормаживание механизма при отсутствии внешнего поступления энергии.

В отличие от цилиндрических и конических моделей, приложение усилия к выходному валу не приведет к проворачиванию механизма. Благодаря этому такие редукторы часто используют в ответственных решениях и подъемно-транспортных устройствах. Червячные редукторы обычно не требовательны к положению установки. Благодаря герметичному корпусу их можно располагать произвольным образом, вследствие чего эти модели активно применяются для модернизации привода станков, промышленных линий и других механизмов. Среди недостатков червячных моделей обычно выделяют небольшой КПД и повышенное тепловыделение.

Планетарные и волновые мотор-редукторы

Благодаря компактности и высоким рабочим моментам, планетарные мотор-редукторы нашли широкое использование в небольших устройствах привода. Высокое передаточное отношение и способность работать с большими нагрузками, ориентирует их на использование совместно с серводвигателями промышленных роботов  и других автоматических устройств. Встречаются планетарные модели и общепромышленного применения. Благодаря особенностям конструкции зубчатой передачи, данные модели мотор-редукторов выполняются с соосными валами. Это позволяет их использовать для привода практически любых механизмов.

Дальнейшим развитием планетарных передач стали волновые редукторы. Они обеспечивают большое передаточное отношение, плавность хода и высокую точность позиционирования выходного вала. Благодаря этому такие модели стали основой построения промышленных роботов. Наряду с высокими характеристиками, данные типы передач отличаются высокими требованиями к изготовлению, а, следовательно, и высокой стоимостью, что существенно сдерживает распространение данных моделей.

Технические характеристики

Редуктора отличаются внешне по размерам и форме. Внутреннее строение разнообразное. Объединяет их всех перечень технических характеристик, по которым они подбираются на различные машины и станки. К основным параметрам редуктора относятся:

  • передаточное число;
  • передаточное отношение;
  • значение крутящего момента редуктора;
  • расположение;
  • количество ступеней;
  • крутящий момент.

Передаточное число берется общее, всех передач, и одновременно указывается таблица передаточных чисел, если узел имеет 2 и более ступени. По нему подбирают узел, который преобразует вращение электродвигателя или мотора с нужное количество оборотов.

При этом важно знать величину крутящего момента на выходном валу редуктора, чтобы определить, будет ли достаточной мощность, чтобы привести в движение агрегат

Передаточное число

Основная характеристика зубчатого зацепления, по которой определяются все остальные параметры. Показывает, на сколько оборотов меньше делает колесо относительно шестерни. Формула передаточного отношения:

U = Z2/Z1;

где U – передаточное число;

Z1 число зубьев шестерни;

Z2 число зубьев зубчатого колеса.

Модуль зубьев шестерни и колеса одинаковый. Их количество напрямую зависит от диаметра. Поэтому можно использовать формулу:

U = D2/D1;

Где D2 и D1 диаметры колеса и шестерни соответственно.

Расчет общего передаточного момента определяется как произведение передаточных чисел всех пар:

Uр = U1× U2× … × Un;

Где Uр передаточное число;

U1, U2, Un передаточные числа зубчатых пар.

При расчете передаточного числа берется отношение количества зубьев колеса и заходов червяка.

В цепных передачах расчет передаточного числа делается аналогично, по количеству зубьев на звездочках и по диаметрам деталей.

При определении передаточного числа ременной пары количество зубьев заменяется диаметрами шкивов и все умножается на коэффициент скольжения. В отличие от зубчатой передачи, линейная скорость движения крайних точек на шкивах не равна друг другу. Зацепление не жесткое, ремень проскальзывает. КПД передачи ниже, чем у зубчатой и цепной передачи.

Передаточное отношение

При проектировании нового узла с заранее заданными характеристиками, за основу берется мощность будущего редуктора. Она определяется по величине крутящего момента:

где U12 – передаточное отношение;

W1 и W2 – угловые скорости;

n1 и n2 – частота вращения.

Знак «–» указывает на обратное направление вращения колеса и вала, на котором оно находится. При нечетном количестве передач ведомое колесо крутится в противоположном направлении по отношению к ведущему, навстречу ему. При четном количестве зацеплений конических колес вращение обоих валов происходит в одном направлении. Заставить его крутится в нужную сторону можно установкой промежуточной детали – паразитки. У нее количество зубьев как у шестерни. Паразитка изменяет только направление вращения. Все остальные характеристики остаются прежними.

Крутящий момент

Определение крутящего момента на валу необходимо, оно позволяет узнать мощность на выходе редуктора, величины связаны прямо пропорциональным соотношением.

Крутящий момент входного двигателя на входе, умножается на передаточное число. Для получения более точного фактического значения надо умножить на значение КПД. Коэффициент зависит от количества ступеней и типа зацепления. Для прямозубой конической пары он равен 98%.

Принцип работы редукторов

Так как в основе работы редуктора лежит передача и преобразование крутящего момента, основной характеристикой механических редукторов является тип механической передачи, которая в них используется.

Типы передач:

  • Цилиндрическая зубчатая передача – один из самых надежных и долговечных типов передач, обеспечивающий высокий ресурс использования. Как правило, применяется в редукторах с особо сложным режимом работы. Этот тип передач подразделяется на прямозубные передачи, косозубчатые и шевронные передачи;
  • Коническая зубчатая передача – в отличие от предыдущей имеет оси входных и выходных валов, которые пересекаются друг с другом. Роторы с такой передачей используются когда необходимо изменить направление передаваемой кинетической энергии;
  • Червячная передача – это механическая передача от винта («червяка») к зубчатому колесу. Имеют достаточно высокое передаточное отношение и относительно низкое КПД. Бывают однозаходные и многозаходные;
  • Гипоидная передача (спироидная) – использует для передачи конические колёса со скрещивающимися осями (колеса могут иметь косые или криволинейные зубья). Такой тип передачи отличается низким шумом работы, плавностью хода и высокой нагрузочной способностью;
  • Цепная передача – как понятно из названия, использует гибкую цепь для передачи механической энергии. Состоит из двух звёздочек (ведущей и ведомой) и цепи, состоящей, в свою очередь, из подвижных звеньев. Это один из самых универсальных, простых и экономичных типов передач;
  • Ремённая передача – передача энергии при помощи гибкого ремня за счет силы трения или сил зацепления (в случае с зубчатыми ремнями). Состоит из ведущего и ведомого шкивов, а также приводного ремня. К преимуществам можно отнести недорогую стоимость, бесшумность и плавность работы, а также легкий монтаж и компенсацию перегрузок за счет проскальзывания;
  • Винтовая передача – преобразует поступательное движение во вращательное, и наоборот. Как правило, представляет собой конструкцию, состоящую из винта и гайки. Бывает передача качения и скольжения. Эта передача чаще используется не для перемещения, а для закрепления. Применяется в регулировочных винтах, приводах исполнительных органов механизмов, различных инструментах;
  • Волновая передача – относительно новый тип передач, характеризующийся очень высоким передаточным отношением. Работает за счёт генерирования волн на гибком колесе, оснащенным меньшим количеством зубьев чем жесткое колесо, и смещения колесо относительно друг друга на разницу зубьев за один оборот. Среди достоинств – малый вес, высокая кинематическая точность, способность передачи момента через герметичные стенки.

Число ступеней редуктора

Как правило, редукторы, состоящие только из одной передачи, встречаются крайне редко. Такой тип редукторов называется одноступенчатым. Куда больше распространение получили двух-трех и многоступенчатые редукторы, причем в таких редукторах могут встречаться как передачи одного типа, так и несколько различных передач, комбинированных между собой. Общее передаточное отношение редуктора напрямую зависит от типа используемой передачи и количества ступеней. В некоторых механизмах количество ступеней может до десятков и сотен тысяч.

Валы редуктора

Размещение различных передач в одном корпусе редуктора позволяет разместить опоры валов с очень точно соблюдённой соосностью и строго выдержанными межосевыми расстояниями. Передача крутящего момента может осуществляться между параллельными, пересекающимися и даже перекрещивающимися валами. Взаимное расположение валов определяет, какой именно тип передачи будет использоваться в данном редукторе. Так, например, для передачи вращения между валами, расположенными параллельно используются цилиндрические зубчатые передачи. Если валы пересекаются – применяют конические зубчатые передачи, а в случае с перекрещивающимися валами оптимальным будет применение червячных, зубчато-винтовых и гипоидных передач. По количеству возможных скоростей выходного вала редукторы можно разделить на механизмы с постоянным показателем передаточного отношения (односкоростные редукторы), а также на двух – и многоскоростные редукторы, с возможностью изменения передаточного отношения.

Конструктивные особенности взрывозащищённых мотор-редукторов

Отдельный класс мотор-редукторов.

Они состоят из редуктора, взрывозащищённого электродвигателя или из редуктора, взрывозащищённого электродвигателя и взрывозащищённого тормоза, а также, могут изготовлены быть под частотное регулирование.

Мотор-редукторы данного вида подбираются по климатическому исполнению, классу взрывоопасной зоны, классу взрывоопасной смеси. 

Характеристики мотор-редуктора по умолчанию

  • на 380 Вольт,
  • климатическое исполнение У3 (электродвигатель У2),
  • степень защиты 1ЕхdIIBT4(класс взрывоопасной зоны 2).

Всё отличное от этого оговаривается при заказе.

Отличия от общепромышленного мотор-редуктора

  1. Главным отличием от общепромышленного мотор-редуктора является факт нормирование температуры нагрева корпуса, как электродвигателя, так и редуктора. Для температурного класса Т4 это 135 градусов, для температурного класса Т5 — 100 градусов, для температурного класса Т6 — 85 градусов. При этом указанные температуры должны быть при верхнем значении рабочей температуры окружающей среды. По этой причине червячные мотор-редукторы и фрикционные мотор-вариаторы в оборудовании с классом T6 не применяются, так как они могут нагреваться до 90-95 градусов. Температурный класс определяется как температура вспышки взрывоопасной смеси  минус 50 . В большинстве случаев хватает температурного класса Т4.
  2. Если общепромышленный электродвигатель комплектуется только одним типом кабельного ввода, то взрывозащищённый комплектуется несколькими типами в зависимости от типа кабеля и наличия металлорукава:
      • для обычного кабеля,
      • для бронированного кабеля,
      • для трубной прокладки,
      • для металлорукава.

    По умолчанию электродвигатель поставляется с кабельным вводом для обычного кабеля. Для зарубежных электродвигателей необходимо указывать тип кабеля, так как они комплектуются кабельным вводом сборщиком мотор-редуктора.

  3. Ещё одно отличие при заказе мотор-редуктора с тормозом. Тормоз может быть как в электродвигателе, так и отдельной единицей. Если тормоз является отдельной единицей, то он может крепиться между электродвигателем и редуктором, или на второй  входной конец вала редуктора (если это позволяет редуктор). Когда тормоз является отдельной единицей —  электродвигатель может быть российского производства. Когда тормоз отдельная единица, то температура эксплуатации мотор-редуктора может быть минус 50 градусов (без подогрева).
  4. Мотор-редуктор с электродвигателем, имеющем защиту 1ExdIICT4, может применяться и там, где требуется взрывозащита 1ExdIIBT4 (но, не наоборот). Мотор-редуктор с электродвигателем, имеющем защиту 1ExdIIBT4, может применяться там, где требуется взрывозащита  1ExdIIAT3 (но, не наоборот).

Работа от преобразователя частоты

Все мотор-редукторы с взрывозащищёнными электродвигателями могут работать от преобразователя частоты с диапазоном регулирования от 35 до 50 Гц без дополнительных опций. Работа в диапазоне регулирования от 5 до 50 Гц приводит к снижению мощности электродвигателя (или увеличению размеров электродвигателя при той же  мощности), или его оснащению дополнительными опциями, например, вентилятором.

Так, 3 кВт электродвигатель превращается в 1,9 кВт. Дополнительные опции в электродвигателях российского производства появляются в электродвигателях 132 габарита и выше. Электродвигатель с дополнительными опциями (вентилятор принудительного охлаждения) может работать и на частотах от 1 Гц. Если у вас диапазон регулирования 5-50 Гц, то момент редукторной части рассчитывается по мощности сетевого питания,то есть, по большей мощности с коррекцией (уменьшением) на 0,05 коэффициентов. В любом случае, момент на редукторе не должен быть выше 1,6 табличного во всех режимах работы мотор-редуктора. В противном случае, мотор-редуктор очень быстро выйдет из строя.

Следует отметить, что обдув редукторной части в мотор-редукторах имеющих крыльчатку на втором конце вала быстроходной ступени, с уменьшением частоты вращения электродвигателя также падает, что может привести к перегреву редуктора. Решением может быть только установка электровентилятора (взрывозащищённого) со стороны редукторной части.

Планетарный мотор редуктор

Эти моторы редукторы позволяют добиться оптимальных эксплуатационных характеристик при соосном расположении редуктора и электродвигателя. Они имеют наименьшую массу и компактны. Именно поэтому на этом принципе работает, например, мотор редуктор стеклоочистителя автомобиля. В промышленности же чаще всего используются моторы редукторы ЗПМ, которые показывают высокие эксплуатационные характеристики. Они применяются во многих промышленных агрегатах, правда этот механизм не годится для использования в агрегата для поднятия грузов.

К положительным характеристикам планетарных моторов редукторов можно отнести:

  • возможность изменения нагрузки на вал, причем не только по величине, но и по времени, агрегат одинаково хорошо справляется как с прямой, так и реверсивной нагрузкой в номинальном режиме работы;
  • рассчитаны на продолжительные периоды работы от 8 до 24 часов;
  • возможность использования при пониженных давлениях, которые эквивалентны подъему на высоту до 1000 м над уровнем моря;
  • рассчитаны для работы в климате с широким разбросом температур, от -45 до +45 ° С и повышенной влажностью. Для тропических широт двигатели специально адаптируются.

В то же время можно отметить и некоторые недостатки этих электромоторов редукторов:

  • их не используют в машинах, требующих точности, поскольку существуют проблемы из-за выбора зазоров между шестернями, этим же затрудняется и ремонт моторов редукторов этого типа;
  • при работе они имеют повышенный момент инерции, в чем явно уступают агрегатам цилиндрической конструкции;
  • могут работать только не в агрессивной и не взрывоопасной среде.

Классификация редукторов

На сегодняшний день типы редукторов классифицируются на основе:

  • типа механической передачи;
  • расположения элементов в пространстве;
  • конструктивных особенностей.

В зависимости от расположения элементов они бывают вертикального и горизонтального исполнения. Среди различных типов можно выделить традиционные механические и мотор-редукторы (с дополнительно установленной двигательной установкой).

Основная, общепринятая классификация редукторов разработана в зависимости от типа передачи и по форме шестерен:

Цилиндрический и конический редуктор

В основе таких моделей используются конические и цилиндрические передачи. Данный тип прямого редуктора характеризируется высоким уровнем КПД (более 80%, в зависимости от количества зубьев). Еще одним преимуществом является практически полное отсутствие нагрева из-за отсутствия нагревающихся элементов. Это позволяет добиться простоты механизма, отсутствия необходимости в дополнительных мерах охлаждения. Данный тип получил высокую популярность благодаря надежности и долговечности.

Планетарный

Отличается от большинства других видов схемой расположения элементов. В его основе лежит планетарная передача. Основной ее функцией можно назвать преобразование поступающего момента. Подобные модели отличаются компактностью благодаря тому, что рабочие элементы находятся в одной геометрической оси, чего нельзя встретить в стандартных механизмах. Широко распространены в сфере приборостроения и машиностроения. Они позволяют комбинировать преимущества цилиндрических и червячных.

Позволяют также добиться оптимального соотношения производительности, компактности, надежности и долговечности.

Червячный

В основе этого вида лежит червячная передача, которая позволяет использовать его для различных целей. Использование этой модели помогает преобразовывать как прямой, так и угловой крутящий момент. В основе конструкции лежит спиралевидный винт, который формой напоминает червяка, из-за чего он получил свое название. Используется довольно редко, так как не отличается надежностью и высокой производительностью. В некоторых случаях при повышении нагрузки может выйти из строя. Несмотря на свои недостатки, он прочно занял свое место в машиностроении, так как является незаменимым при передаче усилия между перпендикулярно расположенными валами.

Волновой

Имеет особенный характеристический размер и тип конструкции, в основе которой лежит неподвижный корпус с нарезанными зубьями. Внутри корпуса расположен гибкий элемент, усилие на которые передается ведущим валом, соединенным с ним. Гибкий элемент изготовлен в виде овала, благодаря чему при движении внутри корпуса создает волнообразные движения.

Данный тип отличается высокой производительностью, имея высокое передаточное отношение, достичь которое невозможно с помощью других моделей

Отличается компактными размерами, что особо важно для использования в точном машиностроении

Следует отметить, что современные тенденции машиностроения требуют особых характеристик от редукторов. Из-за этого все большего распространения получают комбинированные модели. Цилиндрические модели дополняют коническими горизонтальными передачами. Червячные дополняются дополнительными валами, а также некоторые модели оснащаются дополнительными моторами.

Различные виды мотор-редукторов получили широкое распространение благодаря тому, что в одном механизме объединяют еще и электродвигатель и все необходимые дополнительные элементы.

10. Принадлежности:

Односторонний и двухсторонний выходной вал.

d(h6) T T1 L1 Z Z1 m b1 t1
30 14 30 32.5 63 102 128 M6 5 16
40 18 40 43 78 128 164 М6 6 20.5
50 25 50 53.5 92 153 199 М10 8 28
63 25 50 53.5 112 173 219 М10 8 28
75 28 60 63.5 120 192 247 М10 8 31
90 35 80 84.5 140 234 309 М12 10 38
110 42 80 84.5 155 249 324 М16 12 45
130 45 80 85 170 265 340 М16 14 48.5
150 50 82 87 200 297 374 М16 14 53,5
Реактивная штанга.
L Н К D R В
30 85 14 24 8 15 4
40 100 14 31.5 10 18 4
50 100 14 36.5 10 18 4
63 150 14 49 10 18 6
75 200 25 47.5 20 30 6
90 200 25 57.5 20 30 6
110 250 30 62 25 35 6
130 250 30 69 25 35 6

Подшипники и манжетное уплотнение.

Тип Манжетноеуплотнение Манжетноеуплотнение Тип Манжетное уплотнение Подшипники Подшипники Подшипники
030 φ32X7 φ20Xφ30X7 030 φ25Xφ47X7 61904 6201 16005
040 φ40X7 φ25Xφ35X7 040 φ30Xφ40X7 6005 6203 6006
050 φ47X7 φ30Xφ47X7 050 φ40Xφ62X8 6006 6204 6008
063 φ52X7 φ35Xφ52X8 063 φ45Xφ65X8 6007 6205 6009
075 φ62X7 φ40Xφ60X8 075 φ50Xφ72X8 32008 30206 6010
090 φ62X7 φ40Xφ60X8 090 φ60Xφ85X8 32008 30206 6012
110 φ72X7 φ50Xφ68X8 110 φ65Xφ85X8 32010 32207 6013
130 φ72X7 φ50Xφ68X8 130 φ70Xφ90X8 32010 32207 6014
150 φ85X10 φ65Xφ90X10 150 φ90Xφ120X10 6013 6209 6018
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий